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Our Workflow
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Obijective

e |mage-based sequence recognition '_\_de
o Longstanding research topic n
o Includes Text, Numbers, special characters, patterns etc. 2 nd
a9 | F %) |
- ,//////, ,"! //’ ' 2" {hing>

e Our problem Statement : Scene Text Rec,oganlorr L
o Most important and challenging task in image- baséd sequence
recognition.
o Includes Text and Numbers
o Two Type:

m Regular Text
m Irregular Text
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Reqular Text gul
egular Text vs ar Tex;

e Regular form e Irregular form
e From Left to Right with e Curved ordnclined images
0 inclination o Tryto malke, it regular through
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Training Datasets

Synth90k |
e Synthetically generated g ‘,4‘/ IJ ’,/'/// o o
o 7.2 m|II|on tralnlng images /',/’ e ,/" ,/’

,"r’(,/’/’///ll/(,

Font rendering ; Border/shadow & color Composition ‘ , Projective distortion Natural i image blending
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Testing Datasets

NOKIA HIT5k
e 5000 cropped images developed from
google-image séarch
. Mostly R lalrtet
Street View Text (SVT) y 4 qg(” E I/’,‘ o 4
. f r /

Harvested from Google Street View.

Contains distortions and blur - ,’
647 word uncropped images '
Mostly Irregular text

Street View Text Perspective (SVTP)

e 645 word cropped images from SVT
e Has perspective distortions due to the camera viewpoint angle.



Testing Datasets
ICDAR13

[ibrary

e From ICDAR 2013 Robust Reading Competition

e Contains 1,095 word images including ICDARO3. ,
e Mostly Regular Text e // ALL'GATOR
"’ [ 4 - r ,/ ’ / // ,
ICDAR15 Fr ,J e
- - “r fF 4 '/, '/ (/ [ ;
e
ﬁﬁﬁk e Contains 2,077 word |mages |nc|ud|ng ICDAR13

e Cropped from video frames
> e Differs from other ICDAR dataset for real-Life factors like:
d{;{f o Occlusions,Motion blur, Noise, and lllumination
: factors
e Contains Both Regular as well as Irregular



Testing Datasets

Curved Text (CUTES0)

e Mainly contains 288 high resolution word images curved G R Ob
and/or oriented text instances. -

e Dataset was originally proposed for text detection R X TP,
but later used for recognition. r X F Frr

[
- [ , ,/ -

F FrF

Born-Digitalimages ™ r

-

.W'm e Generated from Web and Emails such as headings,

advertisement etc.
‘Q‘ for Robust Reading competition
[ J

Low-resolution with digitally created Text
Contains total 541 images
Mostly regular texts




Testing Datasets

English Character Dataset

e Generated by using of different font styles
e Total 62 batches in 3 different classes
o Capital character - Ato Z (26)
o Small character - a to z (26)
o Numbers -0to 9 (10)
e Total 62992 images with 1016 images for each batch
e Mostly regular character images




Connectionist Temporal Classification (CTC)

e \Well-suited for text and speech recognition
e Alignment-free loss function allowing character repetition in output
e CTC Loss takes the sum of probabilities of all pOSSIble allgnments
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How CTC Decoding Works?



CTC Loss function

Takes the negative of sum of log of probability score for all alignments

bt L

5 0.4 0.4 Probability Score of *‘a *'=10.4 ><,0 AJFb[,A X () 6“—|- 0.6 x 0.4 = 0.64
t r r

Probability Score of b= o 0. 0§ Q%,% 0 0-0:0 x 0.0 = 0.0
' .

b 0-0‘ .0-0 Probability score of ¢‘— = O 6 >< 0 6':/0 36 :

If the Ground Truth is “a”, less penallzatlon

2 _— e If it is anything else, more penalization

SY



Top Level Block diagram

Map to Sequence
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Visual Feature Extraction Stage

- Typically, Deep Convolutional Neural Networks are
used to extract features automatically, due to the

A 4

following advantages " ,

g -

\ 4

- _ /I Fi o
€ Sparse Connectivity/—»li?s's/'lfen ency- {q Overfit
- -~ v’, ’/ ‘/ ,/_ ‘

€ Translational Invariance — Due to the use of MaxPool Layers

¢ Weight Sharing — Capability to extract intrinsic “features” or
patterns with good generalization



Visual Feature Extraction Stage : (1) Basic CNN

= 7 layered Fully Convolutional Neural Network

Convolution #maps:512, k:2 X 2, s:1, p:0
MaxPooling Window:1 X 2, s:2
-> Basic Operations involved are : BatchNormalization -
¢ 2D Convolutions Convolution #maps:512, k:3 X 3, s:1, p:1
¢ 2D Max Pooling BatchNormalization -
& 2D Batch Normalization Convolution #maps:512, k:3 X 3, s:1, p:1
MaxPooling Window:1 X 2, s:2
Convolution #maps:256, k:3 X 3, s:1, p:1
Convolution #maps:256, k:3 X 3, s:1, p:1
-> RelLU Activation (after each Conv2D layer) MaxPooling Window:2 X 2, s:2
Convolution #maps:128, k:3 X 3, s:1, p:1
MaxPooling Window:2 X 2, s:2
Convolution #maps:64, k:3 x 3, s:1, p:1
Batch Normalization is used to ensure smoother training. Input W x 32 gray-scale image




Visual Feature Extraction Stage : (1) Basic CNN

Feature Sequence - Sequence of Feature vectors generated

from left to right (Map to Sequence)
' ,V - /,7 !/. l/ [ ’/ [ ’/ ’/‘
oy ) el L e,

- Each vecton cﬁ?réqunc;ls IS a descriptor
of a recfangnlar ré;f ptlve field portion
of thei |mage r r e ’

= This sequence is the input to the
semantic recognition (recurrent) stage

Receptive field



Visual Feature Extraction Stage : (2) ResNet18

- Modified ResNet18 architecture (popular ImageNet Challenge)

¢ 18 Layered (17 + 1 Bridge) Fully Convolutional NN

- Basic Operations involved are :
2D Convolutions

2D Max Pooling

2D Batch Normalization

Residual “Skip” Connections

L 2R B 2R 2

- BatchNorm2D+RelLU Activation (after each Conv2D layer)

-> Output interpreted as sequence of Feature
vectors generated from left to right, fed into next stage.

Layer Name Output Size Modified ResNet18
convl 112 x 112 x 64 7 x 7,64, stride 2
3 x 3 max pool, stride 2
conv2_x 56 x 56 x 64 3 % 3, 64
X 2
3x3, 64
conv3_x 28 x 28 x 128 3X318 1
| 3x3,128 ]
convéd_x 14 x 14 x 256 9% 5,256 X 2
| 3x3,256 |
convb_x 7 x7x512 3% 3,912 X 2
| 3x3,512 ]
Brid
Fhage 16 x 1 x 512 [4x4,512] x 1

convé




Visual Feature Extraction Stage : (2) ResNet18

- Advantages of Residual Learning :

# Solves the Vanishing Gradients Problem

weight |ayer (due'to $R/pfco7ng’gabns/ grad/ents flow back deep!)
’ /’ ,’ / :
X relu _f |
F( ) l X i ’, // ’/ [ r
weight layer identity & Avoid D;eep‘ Hlfdden “Representations

excessively, (& nontlinearly) morphed

So, instead of say H(x) , initial mapping, let the network fit,
F(z) := H(z) — = which gives H(z) := F(z) + = .



Semantic Recognition Stage

- Typically, Recurrent Neural Networks (RNNs) are used to predict a
conditional label Histribution , for each input feaflire vector

[
gt // r 1\
¢ Capture Contextual Information in a sequence @ . ,,' £r ,,,’ ,@ @
i A
¢ Capable of operating on sequences of arbitrary A =T AP AP A
lengths, traversing from <SOS> to <EOS>. & @ é é

& Backpropagates error differentials to input
An unrolled recurrent neural network

Joint Training of CNN+RNN

h 4




Semantic Recognition Stage : BILSTM

- Two Layered (Stacked) Bidirectional LSTM
(Long Short-Term Memory Networks)

Y1

e Fre.
¢ No. of Hidden Um}s 256 €,
(perlayerpef drre,efl )I/ CCr o
Crr €,

Cr
- ”l//’r,/r/'/’(/«
- Error lefereﬁtrals gfgfba’ckprgpégated using
BPTT Ss e PPy

. /V . " i
€ “Sequences” of Error Differentials concatenated to
maps for using BackProp. to train lower layers

( Map to Sequence operation is inverted)




Semantic Recognition Stage : BILSTM
) Advantages compared to other RNN’s: Output @

€ Long-Term Dependencies are efficiently captured F |

ce;'tf_tf“’/ I\ Cell State
4 att
’1%
& Selective {Read,Write, Forget} operations using -
multiple gates (input, output, forget gates resp.) o 4

J Forge Input
Gate Gate

Output at

t-1 ’

—>

Output
att

€ Solves the Vanishing Gradients Problem !

¢ Bidirectional — Useful Context from both sides!



Pre-Correction Stage : Spatial Transformation Network (STN)

Localisation C Grid
Network

Generator

SO\ OON

Input Image / Sampler V. Rectified Image [’

Fiducial Points




Pre-Correction Stage : Spatial Transformation Network (STN)

- Localisation Network - Locates K(even) fiducial points in the image
-> Grid Generator - Estimates the TPS transformation parameters
- Sampler - Interpolate the pixel values in the output from j;hg, corresponding

>

neighbourhood of pixels in the input. L Ll

- -

Input Image J Rectified Image [’



TPS(Thin Plate Spline) Transformation

ooooooooooooo

-
* .
---------------

e Smooth interpolationof . ... .o 00000 LTl
points with infinite order RS Dot
differentiability B B Sle@l

e Resistant to bending (Like N T R - @

e Y . . e XKe v o ¢ ¢« o A
a thin sheetof metal) . . .. .. ... ... R &

e Smoothness can be ::::::O_g::::: Lenle Tl

increased by regularizaton - - - - - - . O. .... . :@: TN



TPS(Thin Plate Spline) Transformation
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Overview
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Start Part 2
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/

Implementation DetaJ'ls

/



General Details

e Framework Used : PyTorch (For Training,Validation & Testing)
oy | f ,—f -

o -

e Device Configuration : ,
o For Training & Validation — NVIDIA RTX GeForce 2060 GPU 9
o For Testing on Various Datasets — Google Colab’s Tesla GPUs

Co\Ob



Preprocessing Details

e PyTorch’s Lightning Data Collator and Data Transformer was used for the
foIIowing preprocessing steps, wherever required (Specifics are mentioned in later slides)

o Data Loading for Training,Validation and Testing

o GBe= Grayscale Conversion

o Resizing, Converting to Tensors & Normalizing Images

e Batching — For Larger Models, 32 images/batch whereas for smaller models 64
images/batch



Training Configuration

e Output Classes Y,
(of RNN)

e Loss Function
(CTC) Loss

e Optimizer

e Checkpointing
of Models

e Train - Val Split

81 Classes (26+26+10+19)

—

Connectionist-Temporal Classification

- / f
[ !/ o

~ - - ’ ’/ I

. /' Fr | -
Adam Optimizér (Ir’= 0.001)
Decrease in validation loss

80 % - 20 %



Model Evaluation Metrics : Character & Word Accuracy

rain shine is the min. of
operations to be performed to convert
sain thine one string to anotherf e
shin raine LL ( s /’ el
v shi v rai [ IL@V d truth
SHne e CA(pred, truth) (T o~ ,@tpé i ) x 100%
ru

|| Substitution | | Insertion | | Deletion

)

WA (pred, truth) = (pred == truth) x 100%

Lev(“rain”,“shine”) =3
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Stage 1.0 : Regular Text Recognition

~ %)

Training Detalls -

F

e Training Data Size"'ﬁ/276$’2 r"

-~ -

c "y

e Val Data Slze 1319’09 - /// »
[

e Batch Size 164~ (s L

>

e lterations (or) Batches (or) Updates per epoch : 8245
e No. of Epochs : 6
e Averagerate: 1.43 it/s

e Total Time (For Training) : ~12.5 hrs



/ CTC Loss and o/p(Predicted
2 Decoding Sequence)

Basic CRNN ranscription
\Lalir/

Basic CRNN

Pre-Processing

exclusive -

Layer

(

€
r . // . ’/ €
[ 4 r ’ e
/p(predlcfe ,’, /’ » ’/ r
/ Free.
distribution” 1/ r .

sequence)

Number of Trainable Parameters: 8.35 x 10°



Results

Synthook | WITsk | SVTP |ICDAR13 | IcDAR15 | 2orDigital | rp g9
Images
CA 0186 | 8144 | 4713 | 8505 | 6045 85,29 45.28
WA 78.74 | 6555 | 2651 | 7324 |.'36.18/ | 72/ 39.37
< 0 O Fr,
/’ /!/ rf F

INNERTEBRATES 9 /an State TOm

J2se

Intuition
Intuition

EDdaH ndia jeddahphotoblogspotcom

Result for IlIT5k dataset

J
JEDDAH

uregu;;m;ity
Result for Synth90k dataset



INNERTEBRATES

S
m st RATES I causing
Fireplace Resturant MOOSE

joe: 4 conviction
MOOSE conviction

/! // /f/ - ~, '
Result for ICDAR15 dataset Result for Borm Digital Images dataset

aalians
y
|
e |

Smooth

Result for CUTE 80 dataset



ResBIiL ( ResNet + BILSTM )

i CTC Loss and o/p(Predicted
P Decoding Sequence)

\Fe=st )

olp(predictd
_ , probability [ |
V p distribution

sequence)

Pre-Processing
Layer

wl
><|
:*fé]l

Number of Trainable Parameters: 1.82 x 107



Results

Synthook | WITsk | SVTP |ICDAR13 | IcDAR15 | 2orDigital | rp g9
Images
CA 9174 | 8429 | 52.31 84 64.81 86.7 46.73
WA 7711 | 6777 | 3069 | 7051 | 39.92 40.28

/
{ -
o> .

Result for IIIT5k dataset

Result for Synth90k dataset



CHOCOLATE

Result for CUTE 80 dataset



FResBIL ( Frozen ResNet

BiLSTM )

Number of Trainable Parameters: 7.00 x 10°

Pre-Processing
Layer

i/ CTC Loss and
P Decoding

)

y 1

- o

b1 p! (predi cted\c
prolp‘ébz}'rty :

ResNet //
i (Frozen |4 | BiLSTM
Weights
ghts) - tr

>di iza
sequ nce)
> [ |

io

o/p(Predicted

Sequence)

Bl

g /, [
Results o
Born-Digital
Synth90k IT5k SVTP ICDAR13 ICDAR15 CUTE 80
Images
CA 44.33 113866 6.64 9.6 8.23 17.46 7.06
WA 3.26 1¥o2 0 0 0 1.69 0.35




Stage 2.0 : Irregular Text Recognition

Training configuration:,

» l . 3
, / / /_} /’ f (’

e Training Data Slze r1’527”’@32/’ Cr

/’ [

e Val Data Size » 131969’ r /’r'/,/’ |
P sgar

e BatchSize:32 [ ¢ r ,/’/’ ’//' g

'/
l

e Iterations (or) Batches (or) Updates per epoch : 16489
e No. of Epochs : 6

e Averagerate: 2.70 it/s

e Total Time (For Training) : ~13.5 hrs



STN + Basic CRNN

i/ CTC Loss and o/p(Predicted
P Decoding Sequence)

Pre-Processing
Layer

: probability ~
P distfibation
sequénce)

Number of Trainable Parameters: 1.00 x 107




Results

Synthook | WITsk | SVTP |ICDAR13 | IcDAR15 | 2orDigital | rp g9
Images

CA 91.79 | 8378 | 5259 | 8513 | 6649 | [ 86,38 63.32

WA 78.41 | 67.41 32.4 7342 |.'39.84 1 38.19

nterpretations nleremines

stions [

Indla

India

hiemreting

e interpreting

\an dlate
REGE state

Result for IIIT5k dataset

Result for Synth90k dataset



CHOCOLATE MOOSE Amenica Education Irespassing causing

Uiocowe— JMOOSE

Result for STVP dataset Result for ICDAR13 dataset

Sl [ODAY| any

ssL [Tl any

| 4

-
-

=~ % // ,/ , ’
Result for ICDAR15 dataset Result for Borm D‘ibital Images dataset

CAROUSEL BUSINESS CUISINE

WUCISP gsness  CUISINE

Result for CUTE 80 dataset



STN ReSNet B|LSTM i/po/Sp(Predictt;d
Decoding equence
}”// x«r

WQ STN Pre-Processing @ ranscription !
\OF‘Q K/ Layer < N : Layer )

[ [ /// )

| - - - ’
- dipfpredigtes
i/ ResNet |4 | BILSTM 2 rgﬁab’l]iw [
p _! distribution

'sequence)

Number of Trainable Parameters: 1.99 x 107



Results

Synthook | WITsk | SVTP |ICDAR13 | IcDAR15 | 2orDigital | rp g9
Images
CA 92.45 | 8348 | 5259 | 8359 | 6591 | | 85.9 65.57
WA 79.92 | 66.81 | 3473 | 7116 | 4117/ | 71.39 40.28
b e a7 >3

-
- -

Interprotations terpreting PROHIBITED OVERTAKING

Yy “Up, "o

Result for Synth90k dataset Result for IlITSk dataset




CHOCOLATE MOOSE

Result for CUTE 80 dataset






Training Curves : Training and Validation Loss

Significant drop in training loss between 1st and 2nd epoch for all the models
STN+ResNet+BIiLSTM has the best performance among all these models

High loss at the initial epochs maybe due to different initializations

More number of epochs might have yielded a better results as inferred from,Validation loss

. . , 1 o 4 F
Since both are decreasing we haven't still reached overfitting’ = - ~ o |
f - [ I/ ©

N2 N 2

! T

Training Loss vs Epochs Validation Loss vs Epochs
WM STN+ResNet+BiLSTM M ResNet+BiLSTM CRNN+BIiLSTM B STN+CRNN+BIiLSTM M STN+ResNet+BiLSTM M ResNet+BiLSTM CRNN+BIiLSTM B STN+CRNN+BIiLSTM

_ 06 +—

Training Loss
Validation Loss

Epochs Epochs



Training Curves : Training and Validation CA

- Character Accuracy trend supports the Loss trend
- Again, more number of training data and more epochs might have been better
= High learning for characters at the initial epochs
- Training and Validation CA doesn’t show much deviation after 2nd epoch |
’ [ | | /! // f’
f . /, ,I [ f/ ~
Training Character Accuracy vs Epochs Validation Character Accuracy vs Epochs
M STN+ResNet+BiLSTM W ResNet+BiLSTM CRNN+BIiLSTM B STN+CRNN+BILSTM MW STN+ResNet+BiLSTM W ResNet+BiLSTM CRNN+BILSTM W STN+CRNN+BILSTM
100 — 94
3 s g
<C 5 a0
g %
g 60 — §
40 + + + + + + 84
] 2 4 5 6 ] 2 4

Epochs Epochs



Training Curves : Training and Validation WA

- Word Accuracy also follows same trend as Character Accuracy
- Word accuracy has increased between 1st and 2nd epoch but still is low
- Dramatic increase of WA at the end epochs for STN+ResNet+BiLSTM model
- Reason maybe the model is learning character at it’s best first and later learning the sequencing
2 0 O
' | Ay P -
! 4 /’ “I ‘ ’ ~©
Training Word Accuracy vs Epochs Validation Word Accuracy vs Epochs
M STN+ResNet+BiLSTM W ResNet+BiLSTM CRNN+BILSTM ®W STN+CRNN+BILSTM W STN+ResNet+BiLSTM M ResNet+BiLSTM CRNN+BILSTM B STN+CRNN+BIiLSTM

Iy § 80.00°

S 60.00% 4 3

2 40.00% - ‘g

E S 60.00°

= g

20.00% -+ + + - + + 50.00% +
2 4 ( 2 4 f

Epochs Epochs



Interesting Observations : Pre-Correction

STN + ResNet + BiLSTM

Orientation Correction
is handled well

r(/ - /’/ [ f/(f
| (g P
1 r Mean Orientation “learnt”

" from End2End Training
4




Interesting Observations : Pre-Correction

ResNet + BILSTM STN + ResNet + BiLSTM
T Stewnt E
| S g
Partially visible semantics into noise z/ , *t
[ S
+ RESTAURANT

Clearly visible semantics are stressed




Accuracy vs Word Length

e Analysis of llIT5k dataset on both models without STN

Accuracy vs Word Length (for IIITS5k Dataset) Accuracy vs Word Length (for IIIT5k Dataset on ResNet+BIiLSTM)

0.7 0.7
0.6 0.6
05 0.5
o o
© 04 © 04
0 0
& 03 g 03
0.2 0.2
0.1 I I I 0.1
0.0 0.0
0 5 10 15 20 25 0 5 10 15 20 25
Word length Word length

Tested on Basic CRNN Tested on ResNet+BIiLSTM



Accuracy vs Word Length

e Analysis of llIT5k dataset on both models with STN

Accuracy vs Word Length (for 1IITSk Dataset on CRNN+STN+BIiLSTM) Accuracy vs Word Length (for 1IIT5k Dataset on STN+ResNet+BiLSTM)
0.8 0.8
0.7 0.7
0.6 0.6
> 05 > 0.5
o o
S 04 S5 04
o v
< 0.3 < 03
0.2 0.2
0.1 0.1
0.0 0.0
0 5 10 15 20 25 0 5 10 15 20 25
Word length Word length

Tested on STN+ CRNN Tested on STN+ResNet+BiLSTM



Accuracy vs Word Length

Inferences

e High accuracy for average word length for almost all the model ’

e CRNN’s good performance over wider range could be becépéle/btﬁariame,length images
== [ =g

e \We think that square size pre-processing image in ResNet'rlnbgé/q:f)q’rt/j ,b’e( a reason for poor

" ar /I | ,/ -

performance on wider range resl 0 A
e Improvement in accuracy with STN (greater than 0.7) o
e CRNN+STN is length selective:
o Giving very good results for some lengths and very poor for some other lengths
o STN+ResNet:

o Again, square processing of images could be restricting performance



Character Confusion Analysis

e As expected diagonal is perfectly aligned

e Proneto |
-
/
[ r'r(,/ ,/'/J/ Cr
e Poor predictions : ) ,Qc?pn’gqfaplelﬁredllgtllgns:
o L E A ERE L
o 217,10 - T (t) - . !/'_r P
o 0(Zero) 8 o a m- ! ®
o T - 7 -
) q —
9

e Most of the letters having only one horizontal bar at top(like 1,J,7 not E.F),aregredicted as T,
e Most of the letters having only one Vertical bar at top(like 1 and I(Lowercase L)) are predicted as .



True Labels

Sum

580
1920
2657

1022

2203
2286
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16

570

<
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10
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70

16
E

10

15
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402

14
29
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-

o

©

Q

Sum | 1985 | 1989 | 2031 | 2007 | 2025 | 2027 | 2002 | 1913 | 2028 | 2023 | 1926 | 2026 | 1560| 1711 | 2026 | 2019

sjaqn7 padip

21d

2

= 58.

Accuracy



IPZ

LL

Character Confusion Analysis N A H m

No Prediction

e |tis getting confused between some lowercase and uppercase letters like (z,Z) or (y,Y) or (x,X) or

(w,W) or (v,V) etc.
e The receptive fields used in the CNN is causing overlapping of the sequences and prediction error.

Examples: T -
o Nis predicted as NV or W is predicted as VW or V. 'y
o Mis predicted as |'/I. i W Lt M

The highest length of predicted word for one character set is 5 and
all are against the character M.

M e M is the most wrongly predicted character in terms of extra word
length

Tiufl | THil ®
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CONCLUSION




= Train for longer and with a bigger dataset

-> Train with irregular or augmented images o

| "(

<3 ~ [
l e

- A extension of this project would be training Wi'f,h'/af’\;erylsrhall lexicon of
s _E F s

- _ |

o

commonly used English words and giving thém some bias for a better
prediction

- Explore the of Bidirectional Transformers in Semantic Recognition Stage
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