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Objective & Motivation

➔ Automate the domain knowledge 

intensive handcrafting of neural 

architecture

➔ Some of the desirable features are :

◆ Memory, Compute and Time Efficient 

Search

◆ “Expert-free” optimal architecture and 

operation selection

◆ Self Supervision for guiding effective 

architecture exploration 
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Types of Learning

➔ Supervised - Learning is based upon labeled data

➔ Unsupervised - Learning is based upon unlabeled data

➔ Self-Supervised - Learning is based upon pseudo-labeled data

➔ Reinforcement Learning - Reward-based learning
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Self-Supervised Learning

➔ Intermediate between Supervised and Unsupervised learning

➔ Self-supervised learning more closely imitates the way humans learn to 

classify objects

➔ Learns from unlabeled sample data in two steps
◆ Learn pseudo-labels from an unlabelled data

◆ Employ a supervised learning based on this pseudo labels

➔ Tries to create masks inside an unlabelled data to convert it into a pseudo-

labelled data 

➔ Idea is to create a wholesome latent vector representation for a data

➔ Examples - GANs, Auto-encoder
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Advantages/Disadvantages of Self-Supervised Learning

➔ Advantages
◆ No labels are required for learning

◆ The network can learn any data now since labels are not necessary

◆ Better feature representation are learnt

◆ Non-task specific semantic meaning is captured

➔ Disadvantages
◆ The network may take wrong pseudo-labels

◆ Longer training time

◆ Complex learning
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Neural Architecture Search 
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Neural Architecture Search : Typical Challenges

➔ Most of the methods use RL or Evolutionary genetic algorithms

Memory Inefficient + Time Consuming + Compute Intensive

Arch. Search 

performed on 
CIFAR-10
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Architectural Search and Classification Dataset

CIFAR-10

● 60000 32⨉32 RGB images in 10 

classes (6000 examples/class)

● The 10 different class labels are 

Airplane, Automobile, Bird, Cat, 

Deer, Dog, Frog, Horse, Ship, and 

Truck

● Small dataset, helpful for comparing 

architectures
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Architectural Search and Classification Dataset

CIFAR-100

● 60000 32⨉32 RGB images in 100 

classes (600 examples/class)

● The class labels consists of 

different animals, trees, foods, et 

cetera.

● Small dataset but with more 

number of classes
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Classification Dataset

Fashion MNIST

● 70000 28⨉28 grayscale images in 

10 classes (7000 examples/class)

● Out of this 70000, 60000 are for 

training and 10000 for testing

● The different class labels include 

T-shirt/top, Trouser, Pullover, 

Dress, Coat, Sandal, Shirt, 

Sneaker, Bag, and Ankle boot

11



Top Level Block diagram

Search Stage

Pre-processing

Train Stage

Test Stage

Dog, p=0.90
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Underlying Elemental Concepts
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Differentiable Architecture Search

➔ Search of Neural Architectures based Bilevel optimization using gradients

➔ Search space is made continuous rather than discrete set of candidate archs.

➔ Micro search for convolution operation based computational “cells”
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Differentiable Architecture Search : Structure Overview

➔ Search for Normal Cell and Reduction Cell is performed

Note that N can be different during search, train and test phases !
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Differentiable Architecture Search : Cell

➔ A cell is a directed acyclic graph consisting of an ordered sequence of ‘P’ 

nodes.                          (Here, P = 2 inputs + 4 states + 1 output = 7)

➔ Nodes are a set of latent feature maps. Each intermediate node is 

represented as :

➔ Weighted Summation happens for all “operation-outputs”  at each node :
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Differentiable Architecture Search : Cell
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Differentiable Architecture Search : Cell Connections

➔ Each cell has two inputs : c_{k-1} & c_{k-2}
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Partial Channel Connections 

➔ Makes the search memory, computation and time efficient

➔ Idea : Randomly sample (1/K) of the total channels for operation selection

Here, 

K = 4
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Partial Channel Connections : Edge Normalization

➔ Connectivity between nodes can fluctuate due to random channel sampling

➔ Idea : Introduce shared, trainable parameters         on each edge (i,j)
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Partial Channel Connections 

➔ Some of the typical advantages and characteristics when PC DARTS is used are :

◆ Bridges the Optimization Gap → Regularization effect of random channel sampling

◆ Time and Memory Efficiency is improved 

◆ Batch size can increased by approx. K times → Stability of search is ensured (More 
training data is seen for parameter update)

◆ Indirectly provides regularization for weight free operations (Important for improved transfer 
performance)
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Progressive Search

➔ Bridges the “Depth Gap” between search and evaluation (Certain ops. might be preferred in 

deep networks) 

➔ Shallow search leads to cells with shallow connections : Degraded transfer performance on 

difficult datasets
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Progressive Search : Search Space Approximation

➔ Computational overhead increases linearly with the search depth, which brings issues in 

both time and memory : Restriction of Search space is done! 

➔ Search process is split into multiple phase GK each with LK cells.      

➔ Idea : Dropout less important operations (assigned low weight) in the previous phase 
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Progressive Search : Search Space Approximation

Phase Phase Phase 

24



Progressive Search : Search Space Regularization

➔ At each phase GK , parameters are trained from scratch : Altered preferences for 

deeper architectures

➔ Overfitting can happen : Parameter-free skip connects are favoured more as they 

propagate more consistent info and leads to rapid GD on small proxy datasets

➔ More skipconnects : Degrades the transfer performance on difficult datasets

➔ Idea : Operation level Dropout for Skip connects → Partially blocked skip 

connections initially

➔ Dropout rate is decayed during training process in each search stage 
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Barlow Twins Mechanism

➔ Learn embeddings/latent vectors which are invariant to distortion
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Take two identical networks with “slightly different” inputs

Compute the cross-correlation between the outputs

Matrix element of 

Cross-Correlation 

Matrix



Barlow Twins Loss

Barlow Twins 

Loss function 
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Learn as to make the cross-correlation 

function to identity matrix
Trains the 

network to learn 

latent feature 

vectors
Ignore/generalize 

the distortions

Reduces the 

redundancy in 

the embedding 

vectors
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Implementation Details

Part 2
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Overview

Start
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General Details 

● Framework Used : PyTorch (For Search, Training & Testing)

● Device Configuration : 

○ For Search & Train Stages →  Tesla V100 PCl-E 32 GB & 16 GB (IIST HPC),

○ For Testing & Analysis → Google Colab’s Tesla GPUs and NVIDIA RTX GeForce 

2060 GPU
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Preprocessing Details

● PyTorch’s Loader and Data Transformer was used for the following 
preprocessing steps, wherever required (Specifics are mentioned in later slides) :

○ Data Loading for Training,Validation and Testing

○ Random Crop and Random Horizontal Flip Augmentations for Search and Train Stages

○ Resizing, Converting to Tensors & Normalizing Images

● Batching → For Larger GPUs, 128-256 images/batch whereas for smaller GPUs 64-96 
images/batch
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Preprocessing Details : Cutout Regularization

Dog Image Dog Image with Cutout

➔ Process of obfuscating some square regions of input image randomly 

◆ Acts as a regularizer for the model

➔ Applied during Train Stage

32



Preprocessing Details : Barlow Twins

➔ For generating the two distorted images, following transformations are applied 

probabilistically :

◆ Random Crop

◆ Random Horizontal Flip

◆ Random Color jitter

◆ Random Grayscale

◆ Random distortion

◆ Random Erasing
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Training Configuration

● Output Classes 

● Train Optimizer  → Adam Optimizer (lr = 6e-4, β1=0.5,β1=0.999) +

● Search Optimizer → SGD Optimizer (lr = 0.025) + Weight Decay + 

● Checkpointing → Decrease in validation loss

of Models 

● Train - Val Split → 50 K - 10 K

● Auxiliary Loss Towers  → For boosting gradient Flow during Backprop.

→ 10 Classes for CIFAR10 & FMNIST | 100 Classes for CIFAR100

Weight Decay

Cosine LR Scheduler
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Model Evaluation Metrics 
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NAS Operation Space

This is the list of operations we have taken in our Neural Architecture Search 

Space. All the operations ensure that the input and the output shape are same 

through zero padding.

● max_pool_3x3 - Max pooling operation with 3⨉3 kernel

● avg_pool_3x3 - Average pooling operation with 3⨉3 kernel

● skip_connect - Skip Connection

● sep_conv_3x3 - Depth-wise Separable Convolution with 3⨉3 

kernel

● sep_conv_5x5 - Depth-wise Separable Convolution with 5⨉5 

kernel

● dil_conv_3x3 - Dilated  Convolution with 3⨉3 kernel

● dil_conv_5x5 - Dilated  Convolution with 5⨉5 kernel
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Approach Design
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Design Considerations for Architecture Search

➔ Learning Algorithm :

◆ Non-Progressive Case

◆ Progressive Case

❖ Network Parameters optimized for complete [0,40] epochs

❖ Arch. Parameters are optimized for [16,40] epochs
❖ 8 cells arch. searched + 20 cells arch. evaluated 

❖ 3 phases of increased depth arch. Search

➢ Phase-I   → 5 cells   + 8 operations
➢ Phase-II  → 11 cells + 5 operations
➢ Phase-III → 17 cells + 3 operations

❖ Network Parameters optimized for complete [0,40] epochs
❖ Arch. Parameters are optimized for [10, 25] epochs

❖ 20 cells arch. evaluated 
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Design Considerations for Architecture Search

➔ Choosing Operations :

◆

➔ Choosing Internode Connections 

◆ For non-partial connection case :

◆ For partial-connection based search :

39



How did we implement Self-Supervised NAS?

We designed a combination of loss function for supervised and self-supervised 

NAS. 

A combination of Cross-entropy loss function and Barlow Twin Loss functions was 

taken for implementing self-supervised NAS.

The ss_factor can be any real number between 0 and 1 and was chosen as 0.25, 

0.5, 0.75 and 1 for various experiments
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Stage 1 : Vanilla PC DARTS

➔ Features are :

◆ Partial Connections based Search
◆ Supervised Loss for Search and Classification
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Search Stage Results

Normal Cell

Reduction 

Cell
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Results
Class precision recall f1-score Accuracy

plane 0.955394 0.9210 0.937882 0.9878

car 0.950485 0.9790 0.964532 0.9928

bird 0.956476 0.9010 0.927909 0.9860

cat 0.856068 0.9100 0.882210 0.9757

deer 0.948537 0.9400 0.944249 0.9889

dog 0.915888 0.8820 0.898625 0.9801

frog 0.927550 0.9730 0.949732 0.9897

horse 0.961694 0.9540 0.957831 0.9916

ship 0.933529 0.9550 0.944142 0.9887

truck 0.963377 0.9470 0.955119 0.9911

all 0.936200 0.9362 0.936200 0.9362
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FMNIST Transfer Train (proxy 

CIFAR-10) 

Test Accuracy = 95.65
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Stage 2 : SS PC DARTS

➔ Features are :

◆ Partial Connections based Search
◆ Mixture of Self Supervised & Supervised Loss for Search
◆ Supervised Loss for Classification
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Search Stage Results → ss_factor =  0.75

Normal Cell

Reduction 

Cell
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Results → ss_factor =  0.75
Class precision recall f1-score Accuracy

plane 0.944785 0.9240 0.934277 0.9870

car 0.972727 0.9630 0.967839 0.9936

bird 0.933953 0.9050 0.919248 0.9841

cat 0.888407 0.8200 0.852834 0.9717

deer 0.950803 0.9470 0.948898 0.9898

dog 0.861712 0.9160 0.888027 0.9769

frog 0.942857 0.9570 0.949876 0.9899

horse 0.965243 0.9720 0.968610 0.9937

ship 0.938537 0.9620 0.950123 0.9899

truck 0.939072 0.9710 0.954769 0.9908

all 0.933700 0.9337 0.933700 0.9337
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Search Stage Results → ss_factor =  1.00

Normal Cell

Reduction 

Cell
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Results → ss_factor =  1.00
Class precision recall f1-score Accuracy

plane 0.942886 0.9410 0.941942 0.9884

car 0.976000 0.9760 0.976000 0.9952

bird 0.931275 0.9350 0.933134 0.9866

cat 0.903088 0.8480 0.874678 0.9757

deer 0.958959 0.9580 0.958479 0.9917

dog 0.894634 0.9170 0.905679 0.9809

frog 0.952802 0.9690 0.960833 0.9921

horse 0.968876 0.9650 0.966934 0.9934

ship 0.958375 0.9670 0.962668 0.9925

truck 0.960513 0.9730 0.966716 0.9933

all 0.944900 0.9449 0.944900 0.9449
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Stage 3 : Vanilla PCP Darts

➔ Features are :

◆ Progressive + Partial Connections based Search
◆ Supervised Loss for Search and Classification
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Search Stage Results 

Normal Cell

Reduction 

Cell
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Results

Class precision recall f1-score Accuracy

plane 0.971972 0.9710 0.971486 0.9943

car 0.979042 0.9810 0.980020 0.9960

bird 0.966934 0.9650 0.965966 0.9932

cat 0.950785 0.9080 0.928900 0.9861

deer 0.967391 0.9790 0.973161 0.9946

dog 0.923077 0.9600 0.941176 0.9880

frog 0.985972 0.9840 0.984985 0.9970

horse 0.990918 0.9820 0.986439 0.9973

ship 0.973346 0.9860 0.979632 0.9959

truck 0.979839 0.9720 0.975904 0.9952

all 0.968800 0.9688 0.968800 0.9688
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CIFAR-100 Transfer Train 

(proxy CIFAR-10) 

Test Accuracy = 81.92

FMNIST Transfer Train (proxy 

CIFAR-10) 

Test Accuracy = 95.97
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Stage 4 : Self-Supervised PCP Darts

➔ Features are :

◆ Progressive + Partial Connections based Search
◆ Mixture of Self Supervised & Supervised Loss for Search
◆ Supervised Loss for Classification
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Search Stage Results → ss_factor =  0.75

Normal Cell

Reduction 

Cell
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Results → ss_factor =  0.75

Class precision recall f1-score Accuracy

plane 0.952669 0.9460 0.949323 0.9899

car 0.972195 0.9790 0.975585 0.9951

bird 0.932271 0.9360 0.934132 0.9868

cat 0.894467 0.8730 0.883603 0.9770

deer 0.942828 0.9400 0.941412 0.9883

dog 0.907258 0.9000 0.903614 0.9808

frog 0.958621 0.9730 0.965757 0.9931

horse 0.964321 0.9730 0.968641 0.9937

ship 0.966068 0.9680 0.967033 0.9934

truck 0.960199 0.9650 0.962594 0.9925

all 0.945300 0.9453 0.945300 0.9453
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Search Stage Results → ss_factor =  1.00

Normal Cell

Reduction 

Cell

60



Results → ss_factor =  1.00

Class precision recall f1-score Accuracy

plane 0.972919 0.9700 0.971457 0.9943

car 0.980943 0.9780 0.979469 0.9959

bird 0.965898 0.9630 0.964447 0.9929

cat 0.938713 0.9190 0.928752 0.9859

deer 0.966403 0.9780 0.972167 0.9944

dog 0.936634 0.9460 0.941294 0.9882

frog 0.980060 0.9830 0.981528 0.9963

horse 0.986935 0.9820 0.984461 0.9969

ship 0.974000 0.9740 0.974000 0.9948

truck 0.969307 0.9790 0.974129 0.9948

all 0.967200 0.9672 0.967200 0.9672
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CIFAR-100 Transfer Train 

(proxy CIFAR-10) 

Test Accuracy = 74.65

FMNIST Transfer Train (proxy 

CIFAR-10) 

Test Accuracy = 96.06
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Neural Architecture Search in Action !

Evolution of Reduction Cell in Vanilla PC DARTS 63
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Stages Description SS Factor
Test top-1 

Accuracy

Network 

Search Days

No. of 

Parameters

Stage-1 Vanilla PC Darts 0 93.62 0.1610 3.9 M

Stage-2 SS PC Darts

0.25 94.81 0.2223 4.6 M

0.5 92.01 0.2158 1.8 M

0.75 93.37 0.2921 4.6 M

1 94.49 0.2314 4.7 M

Stage-3 Vanilla PCP Darts 0 96.88 0.1883 4.5 M

Stage-4 SS PCP Darts

0.25 96.09 0.2346 3.9 M

0.5 94.07 0.1889 3.7 M

0.75 94.53 0.3535 3.7 M

1 96.72 0.2679 4.2 M

Comparison between various stages on CIFAR-10 Dataset
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Time and Test Accuracy Comparison

➔ Time taken for Architecture Search:

PC-DARTS ≲ PCP-DARTS < P-DARTS 

➔ PCP-DARTS takes much less time as compared to P-DARTS.

➔ PC-DARTS and PCP-DARTS take comparable time for architectural search

➔ Test Accuracy:

PC-DARTS < PCP-DARTS ≲ P-DARTS 

➔ PCP-DARTS shows better accuracy than PC-DARTS

➔ But PCP-DARTS and P-DARTS show almost similar test accuracy.

➔ PCP-DARTS has overall better accuracy and takes lesser time. It combines 

the best of both worlds
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Architecture Comparison

The vanilla PCP-DARTS has less number of skip connections and more depth 

than vanilla PC-DARTS

Vanilla PC-DARTS Normal Cell →

← Vanilla PCP-DARTS Normal Cell
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Does Self-Supervised Learning aid in increasing depth??

● We observed from the normal and reduction cells that Self-Supervised 

Architecture Search leads to the network to have more depth. 

● Possibly diversity, richness and quality of features improve with depth, which 

is ensured by using Barlow Twin Loss.

Vanilla PC-DARTS Normal Cell →

← SS(0.75) PC-DARTS Normal Cell
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PC-DARTS prefers parameter-less operations

● Parameter less operations like pooling and skip-connections are preferred in 

PC-DARTS as compared to PCP-DARTS.

● For transfer training on harder (classification-wise) datasets like ImageNet, 

there is a chance that PC-DARTS arch. might perform inferiorly.

SS(1) PC-DARTS Reduction Cell →

← SS(1) PCP-DARTS Reduction Cell
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PCP-DARTS has more representational power than PC-DARTS

➔ Separable Convolution + Pooling  is a repeated pattern seen in PC DARTS ⇒

Requires two operations for having a larger receptive field.

➔ It is observed in PC-DARTS that Pooling is mostly preceded by a separable 

convolution

➔ In PCP-DARTS Dilated Convolution are commonly seen ⇒ Here only one 

operation has a larger receptive field
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SS(0.75) PCP-DARTS Reduction Cell

SS(1) PC-DARTS Reduction Cell
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Mixture of two objective functions – Barlow Twin Loss + Cross Entropy Loss –

might force the network to juggle between two (possibly) different minimas, 

leading to slightly less performance.

Minima is shifted upwards
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Adversarial Attack Method : FGSM

➔ Generating adversarial test examples to fool Deep Learning models : Provides insight 

into the robustness of the approaches 

➔ Adversarial Example : a maliciously designed input which is perceptually 

indistinguishable from original input but is misclassified by the model

➔ Fast Gradient Sign Method : Computationally Efficient Way of generating adv. 

examples

Like Gradient Ascent 

move in direction of most 
likely misclassification !
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Adversarial Attack Analysis : Graphical Results
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Adversarial Attack Analysis 
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Adversarial Attack Analysis : Probability vs 𝜀

SS PC DARTS, 

ssf=1
Vanilla PC DARTS

SS PC DARTS, 

ssf=0.75

Vanilla PCP 

DARTS

SS PCP DARTS, 

ssf=1

Interesting 

Observations
SS PCP DARTS, 

ssf=0.75
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Adversarial Attack Analysis : Probability vs 𝜀

➔ In the examples considered, all architectures found by each method predict the true class. (Here, Frog)

➔ Self-Supervision is incorporated in the objective function of architectural search → for most of the span of 

epsilon values considered it shows higher probability for the correct class

some amount of Barlow Twin SS, is making the found architecture slightly robust to 

adversarial attacks like FGSM

➔ Dip in the the plot, of prob vs epsilon, for a small range of epsilon values 

Because of the non-task specific loss function, the SS loss function may contain 

multiple minima for the same class as compared to vanilla (Fully-supervised) loss 

function.
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Adversarial Attack Analysis : Probability vs 𝜀

SS PC DARTS, 

ssf=1

Vanilla PC DARTS

SS PC DARTS, 

ssf=0.75

Vanilla PCP 

DARTS

SS PCP DARTS, 

ssf=1

Interesting 

Observations SS PCP DARTS, 

ssf=0.75
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Adversarial Attack Analysis : Probability vs 𝜀

➔ In the example considered, all architectures found by each method predict the true class. (Here, Frog)

➔ Self-Supervision is forcing the algorithm to choose operations that extract higher quality, differentiating 

features among classes, which is indicated in the Adversarial Attack plots.

● Higher probability predictions for the chosen predicted class

● Decorrelation of decision regions to some extent because of SS learning
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Voilà !!

Car, p = 0.94

Conclusion, p = 0.99999

81



Capsule Networks

➔ Capsule Networks are a promising domain in Deep Learning. They have already 

surpassed CNN’s accuracy over small datasets like MNIST.

➔ We tried to include Capsule Networks with three different routings in our NAS 

operation space also.

➔ Some of the problems we faced are listed below
◆ Capsule Network are computationally very expensive and doing a NAS over Capsule Network 

usually takes several GPU-days

◆ The PC-DARTS was eliminating the Capsule Network Operations after the first few iterations
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➔ Search stage and Train Stage can be run for more epochs 

➔ Making the found architectures and learnt weights more robust to adversarial attacks 

(for all epsilon values in case of FGSM)

➔ Make the capsule layers less computational intensive so that they can be incorporated 

in the operation search space.

➔ Explore and Analyse the incorporation of self-supervision for classification

➔ Explore and analyse transfer performance on other tasks (Object Detection etc.)

➔ Explore and analyse transfer train on harder datasets (ImageNet etc.)

Future Work
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