| \ Indian Institute of Space Science and
VA Y Technology, Thiruvananthapuram

Efficient Self-Supervised
Neural Architecture Search

AV490 Deep Learning for Computational Data Science
Course Project

Part 1
\4

o ‘\/\/\

Start

- [
| ’/ / - ?

-
-
! -
I

Introduction and ©Overviéw

Objective & Motivation

- Automate the domain knowledge
intensive handcrafting of neural
architecture

Starting Point

2

18®

Optimal Architecture

©o o
@
® ©
o ® o ©
/'/l/’/"/
I/

- Some of thefdeswéble features are :
* Memory, Compute and Time Efficient
Search
¢ “Expert-free” optimal architecture and
operation selection
& Self Supervision for guiding effective
architecture exploration

Types of Learning

= Supervised - Learning is based upon labeled data

= Unsupervised - Learning is based upon unlabeled data
= Self-Supervised - Learning is based upon pseudo- Iabeled data
- Reinforcement Learning - Reward-based Iearnlng -~

// r

S | @ Supervised @ Reinforcement
Pi i Learning Learning
=
O
= § ¥ Self-Supervised | # Unsupervised
O = Learning Learning
YES NO

Ground-Truth Exists

Self-Supervised Learning

Vol

Vol

Intermediate between Supervised and Unsupervised learning
Self-supervised learning more closely imitates the way humans learn to
classify objects

Learns from unlabeled sample data in two steps’
¢ Learn pseudo-labels from an unlabelled data L L

-

¢ Employ a supervised learning based on this pseudo labels - '
Tries to create masks inside an unlabelled data to convertit into a pseudo-
labelled data
Idea is to create a wholesome latent vector representation for a data
Examples - GANs, Auto-encoder

Advantages/Disadvantages of Self-Supervised Learning

- Advantages
4 No labels are required for learning

& The network can learn any data now since labels are not necessary
¢ Better feature representation are learnt -
€ Non-task specific semantic meaning is captured , L Cre
- Disadvantages “red L
4 The network may take wrong pseudo-labels 3 .t L :

Vo O IE T g i Self-Supervised Learning Workflow
¢ Complex learning

Images Labels

F— ==

Bl & — o0 | v)—comma T Jrnster
ﬂ_ Automated —> 180 Learned

Representations
X Exploit property Y

Neural Architecture Search
Machine Learning

s — &y — =322 — Il

Input Handcrafted Features Classification

Output

Deep Learning

Simyy —

Handcrafted Archs. +
|
nput _&ﬁ Automated Features

AS

Input

Automated Archs. +
Automated Features

Output

Neural Architecture Search : Typical Challenges

- Most of the methods use RL or Evolutionary genetic algorithms

|

+ £ |pte
~ L,
FFr
Times ~ ~ -
\Y | P '
ethod GPUs days) ',
NAS (Zoph & Le, 2017) 800 :
NAS + more filters (Zoph & Le, 2017) 800
Hierarchical NAS (Liu et al., 2018) 200
Micro NAS + Q-Learning (Zhong et al., 2018) 32
Progressive NAS (Liu et al., 2017) 100
NASNet-A (Zoph et al., 2018) 450
NASNet-A + CutOut (Zoph et al., 2018) 450

Arch. Search
performed on

CIFAR-10

Architectural Search and Classification Dataset

CIFAR-10

e 60000 32X32 RGB images in 10
classes (6000 examples/class)

e The 10 different class labels are
Airplane, Automobile, Bird, Cat,
Deer, Dog, Frog, Horse, Ship, and
Truck

e Small dataset, helpful for comparing
architectures

Architectural Search and Classification Dataset

CIFAR-100

e 60000 32X32 RGB images in 100
classes (600 examples/class)

e The class labels consists of
different animals, trees, foods, et
cetera.

e Small dataset but with more
number of classes

10

Classification Dataset % ? J{ 'i n g ; ﬂ%iﬂ } 1
- 1§49 4 ul

Fashion MNIST lé? ﬁ ﬁli Eﬂi**l
. : A m .&ﬁul‘=$l=Mﬂ:x
e 70000 28X28 grayscale images in st fro Pox Aoramdeh A A
10 classes (7000 examples/class) lg‘;“f‘&;:d‘;*);“’“‘;j*

VL. a0 AL &L Pre

Out of this 70000, 60000 are for El‘én & l.‘ i B H:ﬁg i '?g&! %
training and 10000 for testing = 'y i\ g HH' o ﬂg L ;ﬁ };, fﬂ% 7

The different class labels include
T-shirt/top, Trouser, Pullover,
Dress, Coat, Sandal, Shirt,
Sneaker, Bag, and Ankle boot

n@““‘-‘-—-“‘JJJ‘a ~

emarLiseselwlosse@
I o R ™ gy oy B8 R e
il T e . g UL
I AP E2nPASAIABAN AN
\EAJAAL A =Pl Asans
iBAI AL ALl aAnnlaRul;

11

Top Level Block diagram

Search Stage

l Genotype

ama 1rain Stage —

Pre-processing

O &

12

Underlying

' I f
/ g ’/‘ = "'

. e
Loncepts
i - - - f q

- - /' i

]

Differentiable Architecture Search

- Search of Neural Architectures based optimization using
min, Lyq (w* (Cl:), Dc:) w — Network Weights
- w* () = argmin,, Lirain (W, @) a—r Architecture (Ops) Weights
o £r r |

r -
|

- Search space is made continuous rather than discrete set'of candidate archs.

-> Micro search for convolution operation based computational “cells”

14

Differentiable Architecture Search : Structure Overview

= Search for Normal Cell and Reduction Cell is performed

XN X N XN

Normal Cell Reduction Cell Normal Cell Reduction Cell Normal Cell
(Conv. Based) (Cony. Based) (Conv. Based) (Conv. Based) (Conv. Based)

Fully Connected Global Avg.
Layers Pool

15

Differentiable Architecture Search : Cell

= A cell is a directed acyclic graph consisting of an ordered sequence of ‘P’
nodes.

= Nodes are a set of latent feature maps. Each mtermedlate node IS
represented as : L

/
-

L Z-ﬁ{j fi,j (:Bt) /',/"/‘,.’/;"_’ r ’

| f

- Weighted Summation happens for all “operation-outpufs” at each node :

exp (af, 3})

i ZJrGEXP(J})

fij (i) = X oco, o (i)

16

Differentiable Architecture Search : Cell

Previous Previous

Cell ¢_{k-2) Previous Cell ¢ _{k-1} I
|
|
|

No. of State

Node 1 Nodes = 3 |
|
|

Node 2 I
\ A N |
C’ Node 3 |
-~
|
S l
|

Concat

| i

Op1 Op2 Op3
2 o3
ol " 4
' * \Weighted Sum
| at each node
v
ol + o2* + o3 s

c_{k}

Ceil Output

17

Differentiable Architecture Search : Cell Connections
= Each cell has two inputs : ¢ {k-1} & ¢c_{k-2}

Residual Connection
Residual Connection

. Normal Cell — Reduction —_: Normal Cell —» Normal Cell —
>

e
= Cell -

isidual Connection
Residual Connection

Partial Channel Connections

- Makes the search memory, computation and time efficient

- Randomly sample (1/K) of the total channels for operation selection

exp{az, }

fiF (%:3:8:i5) =X,
1,J (:.') E = EJ‘LGEXP{Q:{;}

I// ’

‘ ,/' ,’
fr (,’

Sample
So,3

%

"
¥

Partlal Channel Connection —

fos (%0: So,3)

+ exp{a; j]

Po=g . -
¢ r o'eo exp{aﬁj}

c0(S;;*x;) +H(L— ;j) * x; St j' — Sampling Mask

19

Partial Channel Connections : Edge Normalization

= Connectivity between nodes can fluctuate due to random channel sampling
- Introduce shared, trainable parameters ﬁi, 4 on each edge (i,j)

exp{Bi;
XPC = 3, =Pl LG)y

J i<j Yiei R{BG Y 2 £

. r l
'/ ./’ /' ' ’/ ”‘ 1/ -

Edge Normalization
< A PCe.
Partial Channel LELSSIRIEY)
Connection
fi[.-’é:(xl; Sﬁj‘

-Partial Channel '

1 Connection *| 3 ‘
e P PC
Partial Channel f23 (23523 X3

exp{fi ;}

Connection 9ij = Bireyexp{By }

[=1 =1

20

Partial Channel Connections

= Some of the typical advantages and characteristics when PC DARTS is used are :

4 Bridges the — Regularization effect of random channel sampling
4 Time and Memory Is improved e '/"

Creel,

/ /' & // | "
¢ Batch size can increased by approx. K times — 1 1 of"seélrc’h IS ensured (More

training data is seen for parameter update)

4 Indirectly provides (Important for improved transfer
performance)

21

Progressive Search

- Bridges the “Depth Gap” between search and evaluation (Certain ops. might be preferred in
deep networks)

-> Shallow search leads to cells with shallow connections : Degraded transfer performance on

difficult datasets 2t e ~ .
1,’ ’, /’/ r r (
& /’ ,’ ’/ f g* /,
Search Train & Test Search Train & Test
Stage Stage Stage Stage
i A hY
8 Cell 5 J 11 17 Cell
Cells | Arch Cells Cells | | Cells| Arch

(a) DARTS (b) Progressive DARTS 22

Progressive Search : Search Space Approximation

- Computational overhead increases linearly with the search depth, which brings issues in
both time and memory : Restriction of Search space is done!

- Search process is split into multiple phase Gy each with-Lcells/

As K1 : L¥ ¢|O?J)1 |

- . Dropout less important operations (assigned low weight) in the previous phase

23

Progressive Search : Search Space Approximation

Softmax

Reduction

Cell

Reduction
Cell

Image

(a) Initial Phase

Softmax

0

0.14 (DEL)

=~ =+ 0.06 (DEL),
=== 038 |

Reduction

Reduction
Cell

(b) Intermediate Phase

Softmax

Reduction
Cell

Reduction
Cell

(c) Final Phase

24

Progressive Search : Search Space Regularization

- At each phase G, parameters are trained from scratch : Altered preferences for
deeper architectures

= Overfitting can happen : Parameter-free skip connects are favoured more as they
propagate more consistent info and leads to rapid GD on small/proxy datasets

Sy

- - : ! |
-

= More skipconnects : Degrades the transfer performancé on 'difficult datasets

- : Operation level Dropout for Skip connects — Partially blocked skip
connections initially

- Dropout rate is decayed during training process in each search stage

25

= Learn embeddings/latent vectors which are invariant to distortion

Take two identical networks with “slightly dif[ereht’ i,np/uts

/ -
- -
-

Compute the cross-correlation befween the' outputs

~A LB

| {, A b ’*b 1." b, 7
Matrix element of 4 —

Cross-Correlation / . A 9 /
Matrix "‘l,-' Z":' II”-!? (Zb ':’*b 7

Trains the
network to learn
latent feature
vectors

Barlow Twins
Loss function

Learn as to make the cross-correlation
function to identity matrix

[~g

Cee ,,’ ,- redundancy In

/

'y ,/ phe embedding

F,,/

Fr Cr J,r vectors

f

Ignore/generalize «’, rr
the distortions

ﬁET%ZU—Cﬁ}E-l- A ZZEUQ

; i i
— — — —

Invariance erm redundancy reduction term

C Reduces the

Images

Distorted

images

YA

T~T

YB

Representations
(for transfer tasks)

A

Embeddings

Empirical Target

Cross-corr. Cross-corr.

. C 7

Encoder

ZB

dimension

Projector

28

Introduction and

Overview
®
o ./\/\
A
Start Part 2

et F
| [-~

Implementation Details'-

29

General Detalls

/" \
i '|

[e Framework Used : PyTorch (For Search, Training & Testing)
_/

e Device Configuration : .
o For Search & Train Stages — Tesla V100 PCI-E 32 GB & 16 GB (I1IST HPC),
o For Testing & Analysis — Google Colab’s Tesla GPUs and NVIDIA RTX GeForce
2060 GPU

SAnvipi4 c;c:J\C‘b

30

Preprocessing Detalils

PyTorch’s Loader and Data Transformer was used for the following
preprocessing steps, wherever required (Specifics are mentioned in later slides) :

o Data Loading for Training,Validation and Testing
o Random Crop and Random Horizontal Flip Augmentations fof Séaféh‘and Train Stages

o Resizing, Converting to Tensors & Normalizing Images

Batching — For Larger GPUs, 128-256 images/batch whereas for smaller GPUs 64-96
iImages/batch

31

Preprocessing Detalils : Cutout Regularization

= Process of obfuscating some square regions of input image randomly
€ Acts as a reqgularizer for the model

= Applied during Train Stage

Dog Image Dog Image

32

Preprocessing Details : Barlow Twins

-> For generating the two distorted |mages followmg transformations are applied
probabilistically : s

Random Crop

Random Horizontal Flip
Random Color jitter
Random Grayscale
Random distortion
Random Erasing

L IR IR N IR R ¢

33

Training Configuration

e Output Classes —> 10 Classes for CIFAR10 & FMNIST | 100 Classes for CIFAR100

e Train Optimizer — Optimizer (Ir = 6e-4, 3,=0.5,,=0.999) +
Welight Decay

e Search Optimizer — Optimizer (Ir = 0025) + Welght Decay +

Cosme ,I:R Scheduler
e Checkpointing — Decrease in validation Ioss
of Models
e Train - Val Split — 50K -10K

e Auxiliary Loss Towers — For boosting gradient Flow during Backprop.

34

Model Evaluation Metrics

Class-wise Metrics

T P|class|+T N|class)
Accuracy[class] = 7 Plclass|+FPlclass|+F Nlclass|+T N|class|
T Plclass)
Precision[class] = 1 Plclass|+F Plclass|
T Plclass|
Recall[class] = TPlclass|+F Nlclass|

2% Precision[class|* Recall|class]
Precision|class|+ Recall|class|

F1 Score[class]

where TP[class] - True Positives for class under consideration
FP[class] - False Positives for class under consideration
FN[class] - False Negatives for class under consideration
TN[class] - True Negatives for class under consideration

Overall Metrics (all)
TP
Accuracy = Sum of all elements in Con fusion Matriz
TP
Precision= TP+FP
W o
Recal = TP+FN

2+ Precisions Recall
F1 Score = Precision+ Recall

where (considering micro-averaging method)

TP = Zdass rep [dass]
FP = z(‘lass FpP [CIGSS]
FN = Zdass F N[CIGS.S‘:

35

NAS Operation Space

This is the list of operations we have taken in our Neural Architecture Search
Space. All the operations ensure that the input and the output shape are same
through zero padding.

e max_pool 3x3 - Max pooling operat|on vmth 3X3 kernel

e avg pool 3x3 - Average pooling operatm)n W|th 3X3 kernel

e skip_connect - Skip Connection.” [r

e sep _conv_3x3 - Depth-wise Separable Convolutlon with 3X3
kernel

e sep _conv_5x5 - Depth-wise Separable Convolution with 5X5
kernel

e dil conv_3x3 - Dilated Convolution with 3X3 kernel

dil_conv_5x5 - Dilated Convolution with 5X5 kernel

Introduction and
Overview = !
\4

Start Implementation
Details

|
= [
f -
| =

Approach Design--.

-~

Design Considerations for Architecture Search

0

1r

= Learning Algorithm :

2

Y/ Y/ Y/
0‘0 0‘0 0‘0

7/ 7/ 7/
L X R X R X4

Non-Progressive Case
A 4
Network Parameters optimized for complete [0,40] epochs

Arch. Parameters are optimized for [1'6 ,40] epochs
8 cells arch. searched + 20 cells’ arch(éluéluated
i ,’ e | [
Progfessive €ase.! [|
v/ ' - /’ /I r ‘

-
-
-

3 phases of increased depthrarch..Search
> Phase-l — 5cells + © operations
> Phase-ll — 11 cells + 5 operations
> Phase-lll - 17 cells + 3 operations
Network Parameters optimized for complete [0,40] epochs
Arch. Parameters are optimized for [10, 25] epochs
20 cells arch. evaluated

38

Design Considerations for Architecture Search

0

1y

= Choosing Operations :

#On each edge (¢, j), operation with the largest af j Value is preserved

- Choosing Internode Connections~ - ' I ¢

4 I/‘ o /" / r f
o A ' /’ [’/ f/ e~
¢ For non-partial connection.case ” ,/’ .

[£ g |

L _ (= P $ | ' -
Node z; needs to be pick two links from {ma.xe, Ctﬂfjnmarxr'r a?,j’ 3 a?—-ld}'

4 For partial-connection based search :
Node z; needs to be pick two links from normalised values of the set

{(max, of ;)Bo,j; (max, af ;})B1 ;- -, (max, af_; ;)Bj-1,}

39

How did we implement Self-Supervised NAS?

We designed a combination of loss function for supervised and self-supervised
NAS.

A combination of Cross-entropy loss function and Barlow Twin/Less functions was
ot F

taken for implementing self-supervised NAS. l £,

f = -
o~ rF ~
-

L = ss factor X L7 + (1~ sé;féctor VLcs

The ss_factor can be any real number between 0 and 1 and was chosen as 0.25,
0.5, 0.75 and 1 for various experiments

40

Images

Stage 1 : Vanilla PC DARTS

X

| 8
Preprocessing ! Cell
Layer I

]

' Partial Channel

1 Search Net. Eval. Net.

- Features are :

¢ Partial Connections based Search
4 Supervised Loss for Search and Classification

41

Search Stage Results

Normal Cell

Reduction
Cell

sep_conv_3x3

— N
sep_conv_3x3 2

c {k-2} sk%p_connect 0
skip_connect
sep_conv_5x5 3
dil conv_3x3 1

c {k-1} sep_conv_3x3

T —

dil conv 5x5

skip_connect

c {k-2} max_pool_3x3

dil conv_ 5x5
sep_conv_5x5

dil conv 5x5

c_{k-1}

c_{k}

c_{k}

sep_conv_5xX5
1
sep_conv_3x3>s|:

Results

Class precision | recall |fl-score|Accuracy
plane 0.955394 | 0.9210 |0.937882| 0.9878
car 0.950485 | 0.9790 |0.964532| 0.9928
bird 0.956476 | 0.9010 |0.927909| 0.9860
cat 0.856068 | 0.9100 |0.882210| 0.9757
deer 0.948537 | 0.9400 |0.944249| 0.9889
dog 0.915888 | 0.8820 |0.898625| 0.9801
frog 0.927550 | 0.9730 |0.949732| 0.9897
horse | 0.961694 | 0.9540 [0.957831| 0.9916
ship 0.933529 | 0.9550 |0.944142| 0.9887
truck 0.963377 | 0.9470 |0.955119| 0.9911
all 0.936200 | 0.9362 |0.936200 0.9362

17

33

14

34

31

20

35

10

10

43

FMNIST Transfer Train (proxy
CIFAR-10)

Test Accuracy = 95.65

Prediction: ship
Probability: 99.9999

44

Stage 2 : SS PC DARTS

Predicted
Distorted] PMF - A
images """ T T T T + Latent
S - 1 Vector - A —
BN e : Empirical
« | Cells | Arch. ' A Cross-corr.
Yy A e
Images | Partial Channel - \ C
¢_SearchNet_ _ _ _Eval.Net =l
T~T = Bac ¥
o= *= o '

} Partial Channel

Latent
1 SearchNet, _ _ BVl NoL' yector - B

- [eatures are :
& Partial Connections based Search

<>
» 7B " feature

dimension

Predicted

Target
Cross-corr.

Z

PMF - B

€ Mixture of Self Supervised & Supervised Loss for Search

4 Supervised Loss for Classification

45

Search Stage Results — ss _factor = 0.75

¢ (k2] | sep-conv_5x5 //::p_mnv_SxS \
Normal Cell —— . : , (k)
/ Sep_conv_5x3 max_pool_3x3 "
c_{k-1} Sep_conv_dx5
r ,",I'/,’ ',. ’/, I/’ l/,'/{
F et I T 4 1
e L
E_{k-!l- dil_mnv_SxE o /’;;mw_sxi \Q

: - 2
Reduction ’W sep_conv_5x5 avg_pool_3x3 dil_conv_5x5 c_{k}
Cell sep_conv_55 sep_conv_5x5 3

c_{k-1}

Results — ss factor = 0.75

Class precision | recall |fl-score |Accuracy
plane 0.944785 | 0.9240 |0.934277| 0.9870
car 0.972727 | 0.9630 |0.967839| 0.9936
bird 0.933953 | 0.9050 |0.919248| 0.9841
cat 0.888407 | 0.8200 |0.852834| 0.9717
deer 0.950803 | 0.9470 |0.948898| 0.9898
dog 0.861712 | 0.9160 |0.888027| 0.9769
frog 0.942857 | 0.9570 |0.949876| 0.9899
horse | 0.965243 | 0.9720 |0.968610| 0.9937
ship 0.938537 | 0.9620 |0.950123| 0.9899
truck 0.939072 | 0.9710 |0.954769| 0.9908
all 0.933700 | 0.9337 |0.933700| 0.9337

15

18

102

12

11

21

25

1 43

15

i

47

Prediction: plane

Probabilit

: 81.8041

48

Search Stage Results — ss factor = 1.00

Normal Cell

Reduction
Cell

c_{k-2}

sep_conv_5x5

-1 ()

/;L:Jm’jﬂ

c_{k-1}

dil_conv_5x5

$ep_conv_5x5

/dj;nmi'_aﬁ

avg_pool_3x3 :
dil_conv_5x5
sep_conv_5x5

skip_connect

c_{k}

\ d

sep_conv_3x3 sep_conv_5x5
max_pool_3x3 3

49

Results — ss factor = 1.00

Class precision | recall | fl-score |[Accuracy
plane 0.942886 | 0.9410 | 0.941942| 0.9884
car 0.976000 | 0.9760 | 0.976000 | 0.9952
bird 0.931275 | 0.9350 | 0.933134 | 0.9866
cat 0.903088 | 0.8480 | 0.874678| 0.9757
deer 0.958959 | 0.9580 | 0.958479| 0.9917
dog 0.894634 | 0.9170 | 0.905679 | 0.9809
frog 0.952802 | 0.9690 | 0.960833| 0.9921
horse | 0.968876 | 0.9650 | 0.966934 | 0.9934
ship 0.958375 | 0.9670 | 0.962668 | 0.9925
truck 0.960513 | 0.9730 | 0.966716 | 0.9933
all 0.944900 | 0.9449 | 0.944900 | 0.9449

50

Ll

Prediction: car
Probability: 99.0179

51

Stage 3 : Vanilla PCP Darts

Images

1
Preprocessing I o P o P
Layer

I Partial Channel
]

Search Net.

-> Features are :
€ Progressive + Partial Connections based Search
4 Supervised Loss for Search and Classification

Y

Search Stage Results

Normal Cell

Reduction
Cell

sep_conv_3x3

c_{k-2) sep_conv_5x5

dil_conv_3x3

c_{k-1} M\w_—m//

max_pool_3x3

= | fﬂw&h \
sep_conv_5x5 >

k-2 =
et } max_pool_3x3
max_pool_3x3 1 fﬂ"”g_é;_conv_BX3
=
max_pool_3x3 Sep_conv_5X5
ctk-1} ————— max_pool_3x3

Sep_conv_5x5

c_{k}

\

max_pool_3x3

c_{k}

53

Results

Class precision recall fl-score | Accuracy
plane 0.971972 | 0.9710 | 0.971486 | 0.9943
car 0.979042 | 0.9810 | 0.980020 | 0.9960
bird 0.966934 | 0.9650 | 0.965966 | 0.9932
cat 0.950785 | 0.9080 | 0.928900 | 0.9861
deer 0.967391 | 0.9790 | 0.973161 | 0.9946
dog 0.923077 | 0.9600 | 0.941176 | 0.9880
frog 0.985972 | 0.9840 | 0.984985 | 0.9970
horse 0.990918 | 0.9820 | 0.986439 | 0.9973
ship 0.973346 | 0.9860 | 0.979632 | 0.9959
truck 0.979839 | 0.9720 | 0.975904 | 0.9952
all 0.968800 | 0.9688 | 0.968800 | 0.9688

54

CIFAR-100 Transfer Train
(proxy CIFAR-10)

l

Test Accuracy = 81.92

FMNIST Transfer Train (proxy
CIFAR-10)

l

Test Accuracy = 95.97

Prediction: frog
Probability: 99.9974

55

Stage 4 : Self-Supervised

PCP Darts

_ Predicted
Distorted .atent PMF - A

Images :' -------------- : Vector - A Ernpirit:al

I

¥ I
Cross-corr.

E E H :-I- ZA
g =15 i-)

/ feature

dimension
Latent
Vector - B
Predicted
PMF -B

L
ET Cross-
Entropy

Target
Cross-Cofrr.

-> Features are :
€ Progressive + Partial Connections based Search

¢ Mixture of Self Supervised & Supervised Loss for Search

4 Supervised Loss for Classification

56

Search Stage Results — ss _factor = 0.75

Normal Cell

Reduction
Cell

dil_conv_5x5

/’/d/il_:]nvjﬂ

il g A 2 k
wp dil_conv_515 dil_conv_5x5 dil_conv_5x5 Cl
c_{k-1} dil_conv_5x5 dil_conv_5x5
i ' 4 :” ,f ,' ’/ r 1/,
re 4 -" l’ r I/ | /,
c_{k-2) dil_tﬂnv_SxS 0 ////d;_ conv_5x5 I3 \a
W dil_conv_5x5 dil_conv_5x5 dil_conv_5x5 f; ¢kl
¢ {k-1) dil_conv_5x5 1 dil_conv_5x5

57

Results — ss factor = 0.75

Class | precision | recall |fl-score |Accuracy H -

plane 0.952669 | 0.9460 |0.949323| 0.9899 -’H“ © o o o o 1 =

car 0972195 09790 0975585 09951 - 9 o H 12 13 15 13 1 1 o

bird 0.932271 | 0.9360 [0.934132| 0.9868

cat 0.894467 | 0.8730 |0.883603| 0.9770

deer 0.942828 | 0.9400 [0.941412| 0.9883

dog 0.907258 | 0.9000 |0.903614| 0.9808

frog 0.958621 | 0.9730 |0.965/7/57| 0.9931 g OB U U

horse 0.964321 | 0.97/30 [0.968641| 0.9937 .3 o &

ship 0.966068 | 0.9680 [0.967033| 0.9934

truck 0.960199 | 0.9650 [0.962594| 0.9925

3 22 o 1

all 0.945300 | 0.9453 |0.945300| 0.9453

Prediction: ship
Probability: 99.9271

59

Search Stage Results — ss _factor = 1.00

dil_conv_5x5

Normal Cell

Reduction
Cell

i

c_{k-2}

dil_conv_5x5

sep_conv_5x5

dil_conv_5x5

1

dil_conv_5x5

c_{k-1}

c_{k}

Swomss g
3

c_{k-2)

dil_conv_3x3

sep_conv_5xd

o 1

dil_conv _5x5 7] 2

/ @l_mnvjﬁ

sep_conv_5x5

skip_connect 3

k1) Sep_conv_5x5 T

_

60

Results — ss factor = 1.00

Class | precision | recall | fl-score |Accuracy
plane | 0.972919 | 0.9700 | 0.971457 | 0.9943
car 0.980943 | 0.9780 | 0.979469 | 0.9959
bird 0.965898 | 0.9630 | 0.964447 | 0.9929
cat 0.938713 | 0.9190 | 0.928752 | 0.9859
deer 0.966403 | 0.9780 | 0.972167 | 0.9944
dog 0.936634 | 0.9460 | 0.941294 | 0.9882
frog 0.980060 | 0.9830 | 0.981528 | 0.9963
horse | 0.986935 | 0.9820 | 0.984461 | 0.9969
ship 0.974000 | 0.9740 | 0.974000 | 0.9948
truck 0.969307 | 0.9790 | 0.974129 | 0.9948
all 0.967200 | 0.9672 | 0.967200| 0.9672

13

61

CIFAR-100 Transfer Train
(proxy CIFAR-10)

l

Test Accuracy = 74.65

FMNIST Transfer Train (proxy
CIFAR-10)

l

Test Accuracy = 96.06

Prediction: frog
Probability: 99.9991

62

Neural Architecture Search in Action !
SRUURS

) (oI _—
g ool 33

64

Comparison between various stages on CIFAR-10 Dataset

Stages Description SS Factor fesLIo MEork o of
J P Accuracy |Search Days| Parameters

Stage-1 Vanilla PC Darts 0 93.62 0.1610 3.9M
0.25 94.81 0.2223 4.6 M
: . ~ L (0. 1.8 M

Stage-2 SS PC Darts o 92 ,01__' | 0.-72158
0.75 93.37 - 17 10,2921 4.6 M

- p- [’> '/

1 94.49 [|- -0.2314 4.7 M
Stage-3 Vanilla PCP Darts 0 96.88 0.1883 4.5M
0.25 96.09 0.2346 3.9M
: 94.07 ; 3.7M

Stage-4 SS PCP Darts O'2 Fpcp
0.75 94.53 0.3535 3.7M
il 96.72 0.2679 4.2 M

65

Time and Test Accuracy Comparison

e 2

-
-

VLol

Time taken for Architecture Search:
PC-DARTS < PCP-DARTS < P-DARTS
PCP-DARTS takes as compared to P-DARTS.
PC-DARTS and PCP-DARTS take comparable time for architectural search

©r

-

- -

Test Accuracy: cldlLCrr

PC-DARTS < PCP-DARTS £ P-DARTS'
PCP-DARTS shows better accuracy than PC-DARTS
But PCP-DARTS and P-DARTS show almost similar test accuracy.
PCP-DARTS has overall better accuracy and takes lesser time. It combines
the best of both worlds

66

The vanilla PCP-DARTS has less number of skip connections and more depth
than vanilla PC-DARTS

Vanilla PC-DARTS Normal Cell

dil_conv_5x5

——

= 1
skip_connect

q___i}ilﬁl_l’.‘ul'll'l ect

sep_conv_5x5

- I

¥ dil_conv_5x5
c_{k-2} T gep_conv_5x5
dil_ro nv_Sh 0 | dtl_conv_N
dil_conv_5x5 = .
———''_'_'_'_
c_{k-1} " dil_conv_5x5
“_jhﬂJ:iJnv_SxS \
- e 3 R

di I_conv_3x3 1 e
5911_:'{;1;_33: 3 :

S

dil_conv_5x5

Vanilla PCP-DARTS Normal Cell

67

e We observed from the normal and reduction cells that Self-Supervised
Architecture Search leads to the network to have more depth.

e Possibly diversity, richness and quality of features lmprove with depth, which
is ensured by using Barlow Twin Loss. frcdtl

e
- ! f ~

sep_conv_3x3

—— sep_conwv _foi-l':m
e (k-2) hk:Lp i.:l:lll:llll:'t'l EE} . — -_ -. T .

Nli.l.p COMmeCt

Vanilla PC-DARTS Normal Cell sep_conv. “/ —

|:I|] COnY i:-Li-
"ﬂ.p conwv Sx-l- £

T dil_conv_5x5

c_{k-2}

Ill '-I'I- -
Sep_conv_3x3 Sep_conv._5x5

sep_conv_5x5

sep_conv_5x3 max_pool_3x3

c_{k-1}

SS(0.75) PC-DARTS Normal Cell

sep_conv_5x5

S 68

e Parameter less operations like pooling and skip-connections are preferred in
PC-DARTS as compared to PCP-DARTS.

e For transfer training on harder (classification-wise) datasets like ImageNet,
there is a chance that PC-DARTS arch. might perform inferiorly.

avg_pool_3x3

_{k2} dil_conv_3x3

dil_conv_5x5 i
sep_conv_5x5 sep_conv_3x3

SS(1) PC-DARTS Reduction Cell

c_{k-1} skip_connect

SEp conv oKy
N d|| m*n m 2

k2) " dilcon 33 cm com 30 3 T,
= sep_conv_5x5 sep_conv_5x ___“'f {k} 4
\i ® -)IJT . ' - SS(1) PCP-DARTS Reduction Cell
skipconnet _ TH3
T el)

_— v

69

- Separable Convolution + Pooling is a repeated pattern seen in PC DARTS =
Requires two operations for having a larger receptive field.

- |tis observed in PC-DARTS that Pooling is mostly preceded by a separable
convolution

= |In PCP-DARTS Dilated Convolution are commonly seen : Here only one
operation has a Iarger receptive field e

o ¢ r"fi.r: : /f'(f

70

c_{k-2}

avg_pool_3x3

- ()

/;i[conv_3x3

c_{k-1}

dil_conv_5x5
/ sep_conv_5x5
skip_connect

sep_conv_3x3 sep_conv_5x5
max_pool_3x3 3

—{ 2

c_{k-2}

dil_conv_5x5

dil_conv_5x5
dil_conv_5x5

-1 0

//;;ﬂnU_SRS

dil_conv_5x5

dil_conv_5x5

c_{k-1}

SS(0.75) PCP-DARTS Reduction Cell

71

~
~

Y

Mixture of two objective functions — Barlow Twin Loss + Cross Entropy Loss —
might force the network to juggle between two (possibly) different minimas,
leading to slightly less performance.

2
(x—2)?

x> + (x— 2}2

Pl

Minima is shifted upwar

72

Adversarial Attack Method : FGSM

= Generating adversarial test examples to fool Deep Learning models : Provides insight
into the robustness of the approaches

= Adversarial Example : a maliciously designed input which is perceptually
indistinguishable from original input but is mISC|aSSIerd by the modeI

- f f

= [ast Cradient Sign IVethod : Computationally EfflClentWa r/of,g atlng adv.
’Y ‘?ﬂ

examples
Xgd X—H—:mgn VXJ(X’ m)

I !
f

where
X = original (clean) input Like Gradient Ascent
Xady = adversarial input move in direction of most

likely misclassification !

e = magnitude of adversarial perturbation
VxJ (X, Ye) = gradient of loss function w.r.t to input (X)

73

Adversarial Attack Analysis : Graphical Results

Clean Example Perturbation Adversarial Example

i

2

I -
=
—
o
-. "
Prediction: ship Prediction: ship
Probability: 99.9999 Probability: 98.4747
—

Clean Example Adversarial Example

Prediction: plane Prediction: ship
Probability: 99.7221 Probability: 83.9771

74

Clean Example

Prediction: car
Probability: 99.9923

Clean Example

Prediction: frog
Probability: 99.9904

Adversarial Attack Analysis

Perturbation

Adversarial Example

Prediction: car
Probability: 98.5914

Adversarial Example

Prediction: cat
Probability: 79.2101

Adversarial Attack Analysis : Probability vs &

Adversanal Analysis (FGSM) Flot

SS PC DARTS,

Vanilla PC DARTS
. ssf=1

Predicted Class : frog 1 3
True Class : frog Egailen i} =

Adversanal Analysss (FGSM) Flot
Adversarial Analyses (FGSM) Plot L

Interesting
Observations

Vanilla PCP SS_PCP DARTS,
DARTS _ _ 00 -~/ ssf=1

SS PC DARTS,
ssf=0.75

SS PCP DARTS,
ssf=0.75

Epsdon | =

Adversarial Attack Analysis : Probability vs ¢
- In the examples considered, all architectures found by each method predict the true class. (Here,)

- Self-Supervision is incorporated in the objective function of architectural search — for most of the span of
epsilon values considered it shows higher probability for the correct class

f {
N s
l | IF I ‘
| .

o /l | ’/‘ ‘
some amount of Barlow Twin SS, is making the found arehitéch(e/ ghi

ike FGsMm~ - [

—> Dip in the the plot, of prob vs epsilon, for a small range of epsilon values

l

Because of the non-task specific loss function, the SS loss function may contain
for the same class as compared to vanilla (Fully-supervised) loss

function.
77

Adversarial Attack Analysis : Probability vs &

Adversanal Analyses (FGSM) Plot Adwersanal Analysis (FGSM] Plot

Vanilla PC DARTS

" SS PC DARTS,
SS PC DARTS, 1 ssf=0.75

Predicted Class : frog sl a0 4 ssf=1
True Class : frog e " ! : - . L -+ —

Adversanal Analysis (FGSM) Plot Adversarial Anabysis (FGSM) Plot

Vanilla PCP
. DARTS .
Interesting z 06 ol
Observations : § | SS PCP DARTS,
£ £ SS PCP DARTS, ssf=0.75
ssf=1 |

Adversarial Attack Analysis : Probability vs &

- In the example considered, all architectures found by each method predict the true class. (Here,)

= Self-Supervision is forcing the algorithm to choose operations that extract higher quality, differentiating
features among classes, which is indicated in the Adversarial Attack,pf'o/ts. r

- - '/l /‘! /’ | ’
e - > | f ,/ |

|

e Higher probability predictions for the chosen predictéd’class |
® Decorrelation of decision regions to some extent because of SS learning

79

Introduction and
Overview

Start

Implementation
Details

Approach
Design

Analysis

Part 5
A\ 4

.\

Conclusion and Futuré'Work

Car,p =0.94
Conclusion, p = 0.99999

81

Capsule Networks

- Capsule Networks are a promising domain in Deep Learning. They have already
surpassed CNN'’s accuracy over small datasets like MNIST.

- We tried to include Capsule Networks with three different routings in our NAS
operation space also.

- Some of the problems we faced are listed below |
& Capsule Network are computationally very expensive and domg a NAS over Capsule Network

usually takes several GPU-days
¢ The PC-DARTS was eliminating the Capsule Network Operatlons after the first few iterations

4

82

Search stage and Train Stage can be run for more epochs
Making the found architectures and learnt weights more robust to adversarial attacks

(for all epsilon values in case of FGSM) ~ L Cf

| r

- o v ! |

Make the capsule layers less computational intensive 56 tﬁ_at"/théy'/can be incorporated
in the operation search space.

Explore and Analyse the incorporation of self-supervision for classification

Explore and analyse transfer performance on other tasks (Object Detection etc.)

Explore and analyse transfer train on harder datasets (ImageNet etc.)

83

References

= Chen, Xin, et al. "Progressive differentiable architecture search: Bridging the depth gap
between search and evaluation." Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019.

- Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: leferenttable architecture
search." arXiv preprint arXiv:1806.09055 (2018). - '/’ 2 F

- - ! ' -

= Xu, Yuhui, et al. "PC-DARTS: Partial channel connéc‘tions for mémbry-efficient
architecture search." arXiv preprint arXiv:1907.05737 (2019).

- Timofeev, Aleksandr, Grigorios G. Chrysos, and Volkan Cevher. "Self-Supervised
Neural Architecture Search for Imbalanced Datasets." arXiv preprint
arXiv:2109.08580(2021).

84

Pham, Hieu, et al. "Efficient neural architecture search via parameters sharing." International Conference
on Machine Learning. PMLR, 2018.

Marchisio, Alberto, et al. "NASCaps: A framework for neural architecture search to optimize the accuracy
and hardware efficiency of convolutional capsule networks." 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 2020.

|
f/ 4 ~ -

e e
Zbontar, Jure, et al. "Barlow twins: Self-supervised learning via reduqdéaéy/redtrction," arXiv preprint

-

arXiv:2103.03230(2021). rerd Cr

!

Zhao, Yiyang, et al. "Few-shot neural architecture search." International Conference on Machine Learning.

PMLR, 2021.

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial
examples." arXiv preprint arXiv:1412.6572 (2014).

85

Authors

> Asish kumar Mishra (SC18B074)

> Sri Aditya Deevi (SC18B080)

86

87

	Slide 1
	Slide 2: Introduction and Overview
	Slide 3: Objective & Motivation
	Slide 4: Types of Learning
	Slide 5: Self-Supervised Learning
	Slide 6: Advantages/Disadvantages of Self-Supervised Learning
	Slide 7: Neural Architecture Search
	Slide 8: Neural Architecture Search : Typical Challenges
	Slide 9: Architectural Search and Classification Dataset
	Slide 10: Architectural Search and Classification Dataset
	Slide 11: Classification Dataset
	Slide 12: Top Level Block diagram
	Slide 13
	Slide 14: Differentiable Architecture Search
	Slide 15: Differentiable Architecture Search : Structure Overview
	Slide 16: Differentiable Architecture Search : Cell
	Slide 17: Differentiable Architecture Search : Cell
	Slide 18: Differentiable Architecture Search : Cell Connections
	Slide 19: Partial Channel Connections
	Slide 20: Partial Channel Connections : Edge Normalization
	Slide 21: Partial Channel Connections
	Slide 22: Progressive Search
	Slide 23: Progressive Search : Search Space Approximation
	Slide 24: Progressive Search : Search Space Approximation
	Slide 25: Progressive Search : Search Space Regularization
	Slide 26: Barlow Twins Mechanism
	Slide 27: Barlow Twins Loss
	Slide 28
	Slide 29
	Slide 30: General Details
	Slide 31: Preprocessing Details
	Slide 32: Preprocessing Details : Cutout Regularization
	Slide 33: Preprocessing Details : Barlow Twins
	Slide 34: Training Configuration
	Slide 35: Model Evaluation Metrics
	Slide 36: NAS Operation Space
	Slide 37: Approach Design
	Slide 38: Design Considerations for Architecture Search
	Slide 39: Design Considerations for Architecture Search
	Slide 40: How did we implement Self-Supervised NAS?
	Slide 41: Stage 1 : Vanilla PC DARTS
	Slide 42: Search Stage Results
	Slide 43: Results
	Slide 44
	Slide 45: Stage 2 : SS PC DARTS
	Slide 46: Search Stage Results → ss_factor = 0.75
	Slide 47: Results → ss_factor = 0.75
	Slide 48
	Slide 49: Search Stage Results → ss_factor = 1.00
	Slide 50: Results → ss_factor = 1.00
	Slide 51
	Slide 52: Stage 3 : Vanilla PCP Darts
	Slide 53: Search Stage Results
	Slide 54: Results
	Slide 55
	Slide 56: Stage 4 : Self-Supervised PCP Darts
	Slide 57: Search Stage Results → ss_factor = 0.75
	Slide 58: Results → ss_factor = 0.75
	Slide 59
	Slide 60: Search Stage Results → ss_factor = 1.00
	Slide 61: Results → ss_factor = 1.00
	Slide 62
	Slide 63: Neural Architecture Search in Action !
	Slide 64: Analysis
	Slide 65: Comparison between various stages on CIFAR-10 Dataset
	Slide 66: Time and Test Accuracy Comparison
	Slide 67: Architecture Comparison
	Slide 68: Does Self-Supervised Learning aid in increasing depth??
	Slide 69: PC-DARTS prefers parameter-less operations
	Slide 70: PCP-DARTS has more representational power than PC-DARTS
	Slide 71
	Slide 72
	Slide 73: Adversarial Attack Method : FGSM
	Slide 74: Adversarial Attack Analysis : Graphical Results
	Slide 75: Adversarial Attack Analysis
	Slide 76: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 77: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 78: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 79: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 80: Conclusion and Future Work
	Slide 81
	Slide 82: Capsule Networks
	Slide 83: Future Work
	Slide 84: References
	Slide 85
	Slide 86: Authors
	Slide 87

