
Efficient Self-Supervised
Neural Architecture Search

AV490 Deep Learning for Computational Data Science
Course Project

Indian Institute of Space Science and

Technology, Thiruvananthapuram

Introduction and Overview

Part 1

Start

2

Objective & Motivation

➔ Automate the domain knowledge

intensive handcrafting of neural

architecture

➔ Some of the desirable features are :

◆ Memory, Compute and Time Efficient

Search

◆ “Expert-free” optimal architecture and

operation selection

◆ Self Supervision for guiding effective

architecture exploration

3

Types of Learning

➔ Supervised - Learning is based upon labeled data

➔ Unsupervised - Learning is based upon unlabeled data

➔ Self-Supervised - Learning is based upon pseudo-labeled data

➔ Reinforcement Learning - Reward-based learning

4

Self-Supervised Learning

➔ Intermediate between Supervised and Unsupervised learning

➔ Self-supervised learning more closely imitates the way humans learn to

classify objects

➔ Learns from unlabeled sample data in two steps
◆ Learn pseudo-labels from an unlabelled data

◆ Employ a supervised learning based on this pseudo labels

➔ Tries to create masks inside an unlabelled data to convert it into a pseudo-

labelled data

➔ Idea is to create a wholesome latent vector representation for a data

➔ Examples - GANs, Auto-encoder

5

Advantages/Disadvantages of Self-Supervised Learning

➔ Advantages
◆ No labels are required for learning

◆ The network can learn any data now since labels are not necessary

◆ Better feature representation are learnt

◆ Non-task specific semantic meaning is captured

➔ Disadvantages
◆ The network may take wrong pseudo-labels

◆ Longer training time

◆ Complex learning

6

Neural Architecture Search

7

Neural Architecture Search : Typical Challenges

➔ Most of the methods use RL or Evolutionary genetic algorithms

Memory Inefficient + Time Consuming + Compute Intensive

Arch. Search

performed on
CIFAR-10

8

Architectural Search and Classification Dataset

CIFAR-10

● 60000 32⨉32 RGB images in 10

classes (6000 examples/class)

● The 10 different class labels are

Airplane, Automobile, Bird, Cat,

Deer, Dog, Frog, Horse, Ship, and

Truck

● Small dataset, helpful for comparing

architectures

9

Architectural Search and Classification Dataset

CIFAR-100

● 60000 32⨉32 RGB images in 100

classes (600 examples/class)

● The class labels consists of

different animals, trees, foods, et

cetera.

● Small dataset but with more

number of classes

10

Classification Dataset

Fashion MNIST

● 70000 28⨉28 grayscale images in

10 classes (7000 examples/class)

● Out of this 70000, 60000 are for

training and 10000 for testing

● The different class labels include

T-shirt/top, Trouser, Pullover,

Dress, Coat, Sandal, Shirt,

Sneaker, Bag, and Ankle boot

11

Top Level Block diagram

Search Stage

Pre-processing

Train Stage

Test Stage

Dog, p=0.90
12

Underlying Elemental Concepts

13

Differentiable Architecture Search

➔ Search of Neural Architectures based Bilevel optimization using gradients

➔ Search space is made continuous rather than discrete set of candidate archs.

➔ Micro search for convolution operation based computational “cells”

14

Differentiable Architecture Search : Structure Overview

➔ Search for Normal Cell and Reduction Cell is performed

Note that N can be different during search, train and test phases !
15

Differentiable Architecture Search : Cell

➔ A cell is a directed acyclic graph consisting of an ordered sequence of ‘P’

nodes. (Here, P = 2 inputs + 4 states + 1 output = 7)

➔ Nodes are a set of latent feature maps. Each intermediate node is

represented as :

➔ Weighted Summation happens for all “operation-outputs” at each node :

16

Differentiable Architecture Search : Cell

17

Differentiable Architecture Search : Cell Connections

➔ Each cell has two inputs : c_{k-1} & c_{k-2}

18

Partial Channel Connections

➔ Makes the search memory, computation and time efficient

➔ Idea : Randomly sample (1/K) of the total channels for operation selection

Here,

K = 4

19

Partial Channel Connections : Edge Normalization

➔ Connectivity between nodes can fluctuate due to random channel sampling

➔ Idea : Introduce shared, trainable parameters on each edge (i,j)

20

Partial Channel Connections

➔ Some of the typical advantages and characteristics when PC DARTS is used are :

◆ Bridges the Optimization Gap → Regularization effect of random channel sampling

◆ Time and Memory Efficiency is improved

◆ Batch size can increased by approx. K times → Stability of search is ensured (More
training data is seen for parameter update)

◆ Indirectly provides regularization for weight free operations (Important for improved transfer
performance)

21

Progressive Search

➔ Bridges the “Depth Gap” between search and evaluation (Certain ops. might be preferred in

deep networks)

➔ Shallow search leads to cells with shallow connections : Degraded transfer performance on

difficult datasets

22

Progressive Search : Search Space Approximation

➔ Computational overhead increases linearly with the search depth, which brings issues in

both time and memory : Restriction of Search space is done!

➔ Search process is split into multiple phase GK each with LK cells.

➔ Idea : Dropout less important operations (assigned low weight) in the previous phase

23

Progressive Search : Search Space Approximation

Phase Phase Phase

24

Progressive Search : Search Space Regularization

➔ At each phase GK , parameters are trained from scratch : Altered preferences for

deeper architectures

➔ Overfitting can happen : Parameter-free skip connects are favoured more as they

propagate more consistent info and leads to rapid GD on small proxy datasets

➔ More skipconnects : Degrades the transfer performance on difficult datasets

➔ Idea : Operation level Dropout for Skip connects → Partially blocked skip

connections initially

➔ Dropout rate is decayed during training process in each search stage

25

Barlow Twins Mechanism

➔ Learn embeddings/latent vectors which are invariant to distortion

26

Take two identical networks with “slightly different” inputs

Compute the cross-correlation between the outputs

Matrix element of

Cross-Correlation

Matrix

Barlow Twins Loss

Barlow Twins

Loss function
27

Learn as to make the cross-correlation

function to identity matrix
Trains the

network to learn

latent feature

vectors
Ignore/generalize

the distortions

Reduces the

redundancy in

the embedding

vectors

28

Implementation Details

Part 2

Introduction and

Overview

Start

29

General Details

● Framework Used : PyTorch (For Search, Training & Testing)

● Device Configuration :

○ For Search & Train Stages → Tesla V100 PCl-E 32 GB & 16 GB (IIST HPC),

○ For Testing & Analysis → Google Colab’s Tesla GPUs and NVIDIA RTX GeForce

2060 GPU

30

Preprocessing Details

● PyTorch’s Loader and Data Transformer was used for the following
preprocessing steps, wherever required (Specifics are mentioned in later slides) :

○ Data Loading for Training,Validation and Testing

○ Random Crop and Random Horizontal Flip Augmentations for Search and Train Stages

○ Resizing, Converting to Tensors & Normalizing Images

● Batching → For Larger GPUs, 128-256 images/batch whereas for smaller GPUs 64-96
images/batch

31

Preprocessing Details : Cutout Regularization

Dog Image Dog Image with Cutout

➔ Process of obfuscating some square regions of input image randomly

◆ Acts as a regularizer for the model

➔ Applied during Train Stage

32

Preprocessing Details : Barlow Twins

➔ For generating the two distorted images, following transformations are applied

probabilistically :

◆ Random Crop

◆ Random Horizontal Flip

◆ Random Color jitter

◆ Random Grayscale

◆ Random distortion

◆ Random Erasing

33

Training Configuration

● Output Classes

● Train Optimizer → Adam Optimizer (lr = 6e-4, β1=0.5,β1=0.999) +

● Search Optimizer → SGD Optimizer (lr = 0.025) + Weight Decay +

● Checkpointing → Decrease in validation loss

of Models

● Train - Val Split → 50 K - 10 K

● Auxiliary Loss Towers → For boosting gradient Flow during Backprop.

→ 10 Classes for CIFAR10 & FMNIST | 100 Classes for CIFAR100

Weight Decay

Cosine LR Scheduler

34

Model Evaluation Metrics

35

NAS Operation Space

This is the list of operations we have taken in our Neural Architecture Search

Space. All the operations ensure that the input and the output shape are same

through zero padding.

● max_pool_3x3 - Max pooling operation with 3⨉3 kernel

● avg_pool_3x3 - Average pooling operation with 3⨉3 kernel

● skip_connect - Skip Connection

● sep_conv_3x3 - Depth-wise Separable Convolution with 3⨉3

kernel

● sep_conv_5x5 - Depth-wise Separable Convolution with 5⨉5

kernel

● dil_conv_3x3 - Dilated Convolution with 3⨉3 kernel

● dil_conv_5x5 - Dilated Convolution with 5⨉5 kernel
36

Approach Design

Introduction and

Overview Part 3

Implementation

Details
Start

37

Design Considerations for Architecture Search

➔ Learning Algorithm :

◆ Non-Progressive Case

◆ Progressive Case

❖ Network Parameters optimized for complete [0,40] epochs

❖ Arch. Parameters are optimized for [16,40] epochs
❖ 8 cells arch. searched + 20 cells arch. evaluated

❖ 3 phases of increased depth arch. Search

➢ Phase-I → 5 cells + 8 operations
➢ Phase-II → 11 cells + 5 operations
➢ Phase-III → 17 cells + 3 operations

❖ Network Parameters optimized for complete [0,40] epochs
❖ Arch. Parameters are optimized for [10, 25] epochs

❖ 20 cells arch. evaluated
38

Design Considerations for Architecture Search

➔ Choosing Operations :

◆

➔ Choosing Internode Connections

◆ For non-partial connection case :

◆ For partial-connection based search :

39

How did we implement Self-Supervised NAS?

We designed a combination of loss function for supervised and self-supervised

NAS.

A combination of Cross-entropy loss function and Barlow Twin Loss functions was

taken for implementing self-supervised NAS.

The ss_factor can be any real number between 0 and 1 and was chosen as 0.25,

0.5, 0.75 and 1 for various experiments

40

Stage 1 : Vanilla PC DARTS

➔ Features are :

◆ Partial Connections based Search
◆ Supervised Loss for Search and Classification

41

Search Stage Results

Normal Cell

Reduction

Cell

42

Results
Class precision recall f1-score Accuracy

plane 0.955394 0.9210 0.937882 0.9878

car 0.950485 0.9790 0.964532 0.9928

bird 0.956476 0.9010 0.927909 0.9860

cat 0.856068 0.9100 0.882210 0.9757

deer 0.948537 0.9400 0.944249 0.9889

dog 0.915888 0.8820 0.898625 0.9801

frog 0.927550 0.9730 0.949732 0.9897

horse 0.961694 0.9540 0.957831 0.9916

ship 0.933529 0.9550 0.944142 0.9887

truck 0.963377 0.9470 0.955119 0.9911

all 0.936200 0.9362 0.936200 0.9362

43

FMNIST Transfer Train (proxy

CIFAR-10)

Test Accuracy = 95.65

44

Stage 2 : SS PC DARTS

➔ Features are :

◆ Partial Connections based Search
◆ Mixture of Self Supervised & Supervised Loss for Search
◆ Supervised Loss for Classification

45

Search Stage Results → ss_factor = 0.75

Normal Cell

Reduction

Cell

46

Results → ss_factor = 0.75
Class precision recall f1-score Accuracy

plane 0.944785 0.9240 0.934277 0.9870

car 0.972727 0.9630 0.967839 0.9936

bird 0.933953 0.9050 0.919248 0.9841

cat 0.888407 0.8200 0.852834 0.9717

deer 0.950803 0.9470 0.948898 0.9898

dog 0.861712 0.9160 0.888027 0.9769

frog 0.942857 0.9570 0.949876 0.9899

horse 0.965243 0.9720 0.968610 0.9937

ship 0.938537 0.9620 0.950123 0.9899

truck 0.939072 0.9710 0.954769 0.9908

all 0.933700 0.9337 0.933700 0.9337

47

48

Search Stage Results → ss_factor = 1.00

Normal Cell

Reduction

Cell

49

Results → ss_factor = 1.00
Class precision recall f1-score Accuracy

plane 0.942886 0.9410 0.941942 0.9884

car 0.976000 0.9760 0.976000 0.9952

bird 0.931275 0.9350 0.933134 0.9866

cat 0.903088 0.8480 0.874678 0.9757

deer 0.958959 0.9580 0.958479 0.9917

dog 0.894634 0.9170 0.905679 0.9809

frog 0.952802 0.9690 0.960833 0.9921

horse 0.968876 0.9650 0.966934 0.9934

ship 0.958375 0.9670 0.962668 0.9925

truck 0.960513 0.9730 0.966716 0.9933

all 0.944900 0.9449 0.944900 0.9449

50

51

Stage 3 : Vanilla PCP Darts

➔ Features are :

◆ Progressive + Partial Connections based Search
◆ Supervised Loss for Search and Classification

52

Search Stage Results

Normal Cell

Reduction

Cell

53

Results

Class precision recall f1-score Accuracy

plane 0.971972 0.9710 0.971486 0.9943

car 0.979042 0.9810 0.980020 0.9960

bird 0.966934 0.9650 0.965966 0.9932

cat 0.950785 0.9080 0.928900 0.9861

deer 0.967391 0.9790 0.973161 0.9946

dog 0.923077 0.9600 0.941176 0.9880

frog 0.985972 0.9840 0.984985 0.9970

horse 0.990918 0.9820 0.986439 0.9973

ship 0.973346 0.9860 0.979632 0.9959

truck 0.979839 0.9720 0.975904 0.9952

all 0.968800 0.9688 0.968800 0.9688

54

CIFAR-100 Transfer Train

(proxy CIFAR-10)

Test Accuracy = 81.92

FMNIST Transfer Train (proxy

CIFAR-10)

Test Accuracy = 95.97

55

Stage 4 : Self-Supervised PCP Darts

➔ Features are :

◆ Progressive + Partial Connections based Search
◆ Mixture of Self Supervised & Supervised Loss for Search
◆ Supervised Loss for Classification

56

Search Stage Results → ss_factor = 0.75

Normal Cell

Reduction

Cell

57

Results → ss_factor = 0.75

Class precision recall f1-score Accuracy

plane 0.952669 0.9460 0.949323 0.9899

car 0.972195 0.9790 0.975585 0.9951

bird 0.932271 0.9360 0.934132 0.9868

cat 0.894467 0.8730 0.883603 0.9770

deer 0.942828 0.9400 0.941412 0.9883

dog 0.907258 0.9000 0.903614 0.9808

frog 0.958621 0.9730 0.965757 0.9931

horse 0.964321 0.9730 0.968641 0.9937

ship 0.966068 0.9680 0.967033 0.9934

truck 0.960199 0.9650 0.962594 0.9925

all 0.945300 0.9453 0.945300 0.9453

58

59

Search Stage Results → ss_factor = 1.00

Normal Cell

Reduction

Cell

60

Results → ss_factor = 1.00

Class precision recall f1-score Accuracy

plane 0.972919 0.9700 0.971457 0.9943

car 0.980943 0.9780 0.979469 0.9959

bird 0.965898 0.9630 0.964447 0.9929

cat 0.938713 0.9190 0.928752 0.9859

deer 0.966403 0.9780 0.972167 0.9944

dog 0.936634 0.9460 0.941294 0.9882

frog 0.980060 0.9830 0.981528 0.9963

horse 0.986935 0.9820 0.984461 0.9969

ship 0.974000 0.9740 0.974000 0.9948

truck 0.969307 0.9790 0.974129 0.9948

all 0.967200 0.9672 0.967200 0.9672

61

CIFAR-100 Transfer Train

(proxy CIFAR-10)

Test Accuracy = 74.65

FMNIST Transfer Train (proxy

CIFAR-10)

Test Accuracy = 96.06

62

Neural Architecture Search in Action !

Evolution of Reduction Cell in Vanilla PC DARTS 63

Analysis

Introduction and

Overview

Part 4

Approach

Design

Start Implementation

Details

64

Stages Description SS Factor
Test top-1

Accuracy

Network

Search Days

No. of

Parameters

Stage-1 Vanilla PC Darts 0 93.62 0.1610 3.9 M

Stage-2 SS PC Darts

0.25 94.81 0.2223 4.6 M

0.5 92.01 0.2158 1.8 M

0.75 93.37 0.2921 4.6 M

1 94.49 0.2314 4.7 M

Stage-3 Vanilla PCP Darts 0 96.88 0.1883 4.5 M

Stage-4 SS PCP Darts

0.25 96.09 0.2346 3.9 M

0.5 94.07 0.1889 3.7 M

0.75 94.53 0.3535 3.7 M

1 96.72 0.2679 4.2 M

Comparison between various stages on CIFAR-10 Dataset

65

Time and Test Accuracy Comparison

➔ Time taken for Architecture Search:

PC-DARTS ≲ PCP-DARTS < P-DARTS

➔ PCP-DARTS takes much less time as compared to P-DARTS.

➔ PC-DARTS and PCP-DARTS take comparable time for architectural search

➔ Test Accuracy:

PC-DARTS < PCP-DARTS ≲ P-DARTS

➔ PCP-DARTS shows better accuracy than PC-DARTS

➔ But PCP-DARTS and P-DARTS show almost similar test accuracy.

➔ PCP-DARTS has overall better accuracy and takes lesser time. It combines

the best of both worlds

66

Architecture Comparison

The vanilla PCP-DARTS has less number of skip connections and more depth

than vanilla PC-DARTS

Vanilla PC-DARTS Normal Cell →

← Vanilla PCP-DARTS Normal Cell

67

Does Self-Supervised Learning aid in increasing depth??

● We observed from the normal and reduction cells that Self-Supervised

Architecture Search leads to the network to have more depth.

● Possibly diversity, richness and quality of features improve with depth, which

is ensured by using Barlow Twin Loss.

Vanilla PC-DARTS Normal Cell →

← SS(0.75) PC-DARTS Normal Cell

68

PC-DARTS prefers parameter-less operations

● Parameter less operations like pooling and skip-connections are preferred in

PC-DARTS as compared to PCP-DARTS.

● For transfer training on harder (classification-wise) datasets like ImageNet,

there is a chance that PC-DARTS arch. might perform inferiorly.

SS(1) PC-DARTS Reduction Cell →

← SS(1) PCP-DARTS Reduction Cell

69

PCP-DARTS has more representational power than PC-DARTS

➔ Separable Convolution + Pooling is a repeated pattern seen in PC DARTS ⇒

Requires two operations for having a larger receptive field.

➔ It is observed in PC-DARTS that Pooling is mostly preceded by a separable

convolution

➔ In PCP-DARTS Dilated Convolution are commonly seen ⇒ Here only one

operation has a larger receptive field

70

SS(0.75) PCP-DARTS Reduction Cell

SS(1) PC-DARTS Reduction Cell

71

Mixture of two objective functions – Barlow Twin Loss + Cross Entropy Loss –

might force the network to juggle between two (possibly) different minimas,

leading to slightly less performance.

Minima is shifted upwards

72

Adversarial Attack Method : FGSM

➔ Generating adversarial test examples to fool Deep Learning models : Provides insight

into the robustness of the approaches

➔ Adversarial Example : a maliciously designed input which is perceptually

indistinguishable from original input but is misclassified by the model

➔ Fast Gradient Sign Method : Computationally Efficient Way of generating adv.

examples

Like Gradient Ascent

move in direction of most
likely misclassification !

73

Adversarial Attack Analysis : Graphical Results

74

Adversarial Attack Analysis

75

Adversarial Attack Analysis : Probability vs 𝜀

SS PC DARTS,

ssf=1
Vanilla PC DARTS

SS PC DARTS,

ssf=0.75

Vanilla PCP

DARTS

SS PCP DARTS,

ssf=1

Interesting

Observations
SS PCP DARTS,

ssf=0.75

76

Adversarial Attack Analysis : Probability vs 𝜀

➔ In the examples considered, all architectures found by each method predict the true class. (Here, Frog)

➔ Self-Supervision is incorporated in the objective function of architectural search → for most of the span of

epsilon values considered it shows higher probability for the correct class

some amount of Barlow Twin SS, is making the found architecture slightly robust to

adversarial attacks like FGSM

➔ Dip in the the plot, of prob vs epsilon, for a small range of epsilon values

Because of the non-task specific loss function, the SS loss function may contain

multiple minima for the same class as compared to vanilla (Fully-supervised) loss

function.
77

Adversarial Attack Analysis : Probability vs 𝜀

SS PC DARTS,

ssf=1

Vanilla PC DARTS

SS PC DARTS,

ssf=0.75

Vanilla PCP

DARTS

SS PCP DARTS,

ssf=1

Interesting

Observations SS PCP DARTS,

ssf=0.75

78

Adversarial Attack Analysis : Probability vs 𝜀

➔ In the example considered, all architectures found by each method predict the true class. (Here, Frog)

➔ Self-Supervision is forcing the algorithm to choose operations that extract higher quality, differentiating

features among classes, which is indicated in the Adversarial Attack plots.

● Higher probability predictions for the chosen predicted class

● Decorrelation of decision regions to some extent because of SS learning

79

Conclusion and Future Work

Introduction and

Overview

Start Implementation

Details

Analysis

Part 5

Approach

Design

80

Voilà !!

Car, p = 0.94

Conclusion, p = 0.99999

81

Capsule Networks

➔ Capsule Networks are a promising domain in Deep Learning. They have already

surpassed CNN’s accuracy over small datasets like MNIST.

➔ We tried to include Capsule Networks with three different routings in our NAS

operation space also.

➔ Some of the problems we faced are listed below
◆ Capsule Network are computationally very expensive and doing a NAS over Capsule Network

usually takes several GPU-days

◆ The PC-DARTS was eliminating the Capsule Network Operations after the first few iterations

82

➔ Search stage and Train Stage can be run for more epochs

➔ Making the found architectures and learnt weights more robust to adversarial attacks

(for all epsilon values in case of FGSM)

➔ Make the capsule layers less computational intensive so that they can be incorporated

in the operation search space.

➔ Explore and Analyse the incorporation of self-supervision for classification

➔ Explore and analyse transfer performance on other tasks (Object Detection etc.)

➔ Explore and analyse transfer train on harder datasets (ImageNet etc.)

Future Work

83

References

➔ Chen, Xin, et al. "Progressive differentiable architecture search: Bridging the depth gap

between search and evaluation." Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2019.

➔ Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture

search." arXiv preprint arXiv:1806.09055 (2018).

➔ Xu, Yuhui, et al. "PC-DARTS: Partial channel connections for memory-efficient

architecture search." arXiv preprint arXiv:1907.05737 (2019).

➔ Timofeev, Aleksandr, Grigorios G. Chrysos, and Volkan Cevher. "Self-Supervised

Neural Architecture Search for Imbalanced Datasets." arXiv preprint

arXiv:2109.08580(2021).

84

➔ Pham, Hieu, et al. "Efficient neural architecture search via parameters sharing." International Conference

on Machine Learning. PMLR, 2018.

➔ Marchisio, Alberto, et al. "NASCaps: A framework for neural architecture search to optimize the accuracy

and hardware efficiency of convolutional capsule networks." 2020 IEEE/ACM International Conference On

Computer Aided Design (ICCAD). IEEE, 2020.

➔ Zbontar, Jure, et al. "Barlow twins: Self-supervised learning via redundancy reduction." arXiv preprint

arXiv:2103.03230(2021).

➔ Zhao, Yiyang, et al. "Few-shot neural architecture search." International Conference on Machine Learning.

PMLR, 2021.

➔ Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial

examples." arXiv preprint arXiv:1412.6572 (2014). 85

Authors

➢ Asish kumar Mishra (SC18B074)

➢ Sri Aditya Deevi (SC18B080)

86

Introduction and

Overview

Start Implementation

Details

Analysis End

Conclusion and

Future Work

Thank You !

Approach

Design

87

	Slide 1
	Slide 2: Introduction and Overview
	Slide 3: Objective & Motivation
	Slide 4: Types of Learning
	Slide 5: Self-Supervised Learning
	Slide 6: Advantages/Disadvantages of Self-Supervised Learning
	Slide 7: Neural Architecture Search
	Slide 8: Neural Architecture Search : Typical Challenges
	Slide 9: Architectural Search and Classification Dataset
	Slide 10: Architectural Search and Classification Dataset
	Slide 11: Classification Dataset
	Slide 12: Top Level Block diagram
	Slide 13
	Slide 14: Differentiable Architecture Search
	Slide 15: Differentiable Architecture Search : Structure Overview
	Slide 16: Differentiable Architecture Search : Cell
	Slide 17: Differentiable Architecture Search : Cell
	Slide 18: Differentiable Architecture Search : Cell Connections
	Slide 19: Partial Channel Connections
	Slide 20: Partial Channel Connections : Edge Normalization
	Slide 21: Partial Channel Connections
	Slide 22: Progressive Search
	Slide 23: Progressive Search : Search Space Approximation
	Slide 24: Progressive Search : Search Space Approximation
	Slide 25: Progressive Search : Search Space Regularization
	Slide 26: Barlow Twins Mechanism
	Slide 27: Barlow Twins Loss
	Slide 28
	Slide 29
	Slide 30: General Details
	Slide 31: Preprocessing Details
	Slide 32: Preprocessing Details : Cutout Regularization
	Slide 33: Preprocessing Details : Barlow Twins
	Slide 34: Training Configuration
	Slide 35: Model Evaluation Metrics
	Slide 36: NAS Operation Space
	Slide 37: Approach Design
	Slide 38: Design Considerations for Architecture Search
	Slide 39: Design Considerations for Architecture Search
	Slide 40: How did we implement Self-Supervised NAS?
	Slide 41: Stage 1 : Vanilla PC DARTS
	Slide 42: Search Stage Results
	Slide 43: Results
	Slide 44
	Slide 45: Stage 2 : SS PC DARTS
	Slide 46: Search Stage Results → ss_factor = 0.75
	Slide 47: Results → ss_factor = 0.75
	Slide 48
	Slide 49: Search Stage Results → ss_factor = 1.00
	Slide 50: Results → ss_factor = 1.00
	Slide 51
	Slide 52: Stage 3 : Vanilla PCP Darts
	Slide 53: Search Stage Results
	Slide 54: Results
	Slide 55
	Slide 56: Stage 4 : Self-Supervised PCP Darts
	Slide 57: Search Stage Results → ss_factor = 0.75
	Slide 58: Results → ss_factor = 0.75
	Slide 59
	Slide 60: Search Stage Results → ss_factor = 1.00
	Slide 61: Results → ss_factor = 1.00
	Slide 62
	Slide 63: Neural Architecture Search in Action !
	Slide 64: Analysis
	Slide 65: Comparison between various stages on CIFAR-10 Dataset
	Slide 66: Time and Test Accuracy Comparison
	Slide 67: Architecture Comparison
	Slide 68: Does Self-Supervised Learning aid in increasing depth??
	Slide 69: PC-DARTS prefers parameter-less operations
	Slide 70: PCP-DARTS has more representational power than PC-DARTS
	Slide 71
	Slide 72
	Slide 73: Adversarial Attack Method : FGSM
	Slide 74: Adversarial Attack Analysis : Graphical Results
	Slide 75: Adversarial Attack Analysis
	Slide 76: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 77: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 78: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 79: Adversarial Attack Analysis : Probability vs 𝜀
	Slide 80: Conclusion and Future Work
	Slide 81
	Slide 82: Capsule Networks
	Slide 83: Future Work
	Slide 84: References
	Slide 85
	Slide 86: Authors
	Slide 87

