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Differentiable Architecture Search

* Search of Neural Architectures based Bilevel
optimization using gradients.
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w — Network Weights
a — Architecture (Ops) Weights

* Micro search for convolutional operation
based computational “cells”.
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* |dea: Randomly sample (1/K) of the total channels for operation selection.
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Progressive Search

* Bridges the “Depth Gap” between search and evaluation (Certain ops. might be

preferred in deep networks)
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Barlow Twins Self-Supervision

Representations
(for transfer tasks)

* Optimizing loss to make cross-

correlation close to identity matrix: e " Embeddings
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Notable Results & Analyses

* Based on some experiments conducted on CIFAR-10 dataset we found that (quantitatively) :

o Time taken for Architecture Search: PC-DARTS < PCP-DARTS < P-DARTS PC > Partial Channel connections
o Test Accuracy : PC-DARTS < PCP-DARTS< P-DARTS P > Progressive
Vanilla PC-DARTS Normal Cell Vanilla PCP-DARTS Normal Cell SS(0.75) PC-DARTS Normal Cell

—
skip_connect
skip_connect

dil conv 5x5

sep_cony_5x

c_{k-2} | _dil_conv_5x5

dil_conv_5x5

¢_{k2}

Sep_conv_3x)

— sep_conv_5x5

sep_conv_>5 Xi'::

s8p_conv_5x5 mas_pool_3x3 max_pool_3x3

cfilfconijXS —
"*-a.j____; - R l
sep_conv_3x3 s
—Fﬁ_ con;;_)S x5

* Some interesting observations comparing the above searched architectures are:

- conv_555

k1)

sep_conv_5x5

o Vanilla PCP-DARTS has less number of skip connections and more depth than Vanilla PC-DARTS.
o Self-Supervised Architecture Search leads the network to have more depth.
o Parameter less operations like skip-connections are preferred in PC-DARTS as compared to PCP-DARTS.
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Notable Results & Analyses

* We also tested the robustness of our methods by generating adversarial test examples:

where

Fast Gradient Sign . A = original (clean) input
Method (FGSMg) Xadv — X + € S1g21 VXJ X, Ytruc X,4y = adversarial input
€ = magnitude of adversarial perturbation
VxJ (X, Y ) = gradient of loss function w.rt to input (X)
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Conclusion

* We presented efficient neural architecture search algorithms to address the high
resource demands of traditional handcrafted neural architectures.

* We conducted experiments in both fully supervised and self-supervised settings,
utilizing a combined loss function of supervised cross-entropy and self-supervision loss
to guide the search for optimal architectures.

* We analysed performance on CIFAR-10, demonstrating that the proposed
methodology balances time and accuracy, achieving results with less than 3% test
error, close to state-of-the-art benchmarks.

* We provided interesting analyses that indicate the effectiveness of our proposed
methods while transfer-training as well as their robustness in presence of adversarial
noise.
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