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Proposed Approach : Key Elements

Differentiable Architecture Search

• Search of Neural Architectures based Bilevel 
optimization using gradients.

• Micro search for convolutional operation 
based computational “cells”.

Partial Channel Connections

Here, K = 4

• Idea: Randomly sample (1/K) of the total channels for operation selection.

Makes the 
search 
efficient!

Progressive Search

• Bridges the “Depth Gap” between search and evaluation (Certain ops. might be 
preferred in deep networks) 

Barlow Twins Self-Supervision

• Optimizing loss to make cross-
correlation close to identity matrix:

✓ DNN learns latent feature vectors

✓ Ignore/generalize distortions

✓ Reduces redundancy
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Proposed Approach : Illustrative Overview

Vanilla PCP DARTS

• Salient Features are:

✓ DARTS bilevel optimization framework

✓ Partial Channel connections for efficiency

✓ Progressive search for bridging depth gap

✓ Supervised Loss for Search and Classification

Self-Supervised PCP DARTS

• Salient Features are:

✓ DARTS bilevel optimization framework

✓ Partial Channel connections for efficiency

✓ Progressive search for bridging depth gap

✓ Mix. of Self-Supervised & Supervised Loss for Search:

✓ Supervised Loss for Classification



• Based on some experiments conducted on CIFAR-10 dataset we found that (quantitatively) :

o Time taken for Architecture Search: PC-DARTS ≲ PCP-DARTS < P-DARTS 

o Test Accuracy                       : PC-DARTS <  PCP-DARTS≲ P-DARTS 
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Notable Results & Analyses

Vanilla PC-DARTS Normal Cell Vanilla PCP-DARTS Normal Cell SS(0.75) PC-DARTS Normal Cell

• Some interesting observations comparing the above searched architectures are:

o Vanilla PCP-DARTS has less number of skip connections and more depth than Vanilla PC-DARTS.

o Self-Supervised Architecture Search leads the network to have more depth.

o Parameter less operations like skip-connections are preferred in PC-DARTS as compared to PCP-DARTS.

PC → Partial Channel connections

P → Progressive 
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Notable Results & Analyses

• We also tested the robustness of our methods by generating adversarial test examples:

SS PC DARTS, 
ssf=1

Vanilla PC DARTS

SS PC DARTS, 
ssf=0.75

Vanilla PCP DARTS SS PCP DARTS, ssf=1
SS PCP DARTS, 
ssf=0.75

Fast Gradient Sign 
Method (FGSM) 



• We presented efficient neural architecture search algorithms to address the high 
resource demands of traditional handcrafted neural architectures.

• We conducted experiments in both fully supervised and self-supervised settings, 
utilizing a combined loss function of supervised cross-entropy and self-supervision loss 
to guide the search for optimal architectures.

• We analysed performance on CIFAR-10, demonstrating that the proposed 
methodology balances time and accuracy, achieving results with less than 3% test 
error, close to state-of-the-art benchmarks.

• We provided interesting analyses that indicate the effectiveness of our proposed 
methods while transfer-training as well as their robustness in presence of adversarial 
noise.
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Conclusion
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THANK YOU!

https://www.sriadityadeevi.com

dsriaditya999@gmail.com
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