

IMCOM 2025

International Conference on Ubiquitous Information Management and Communication

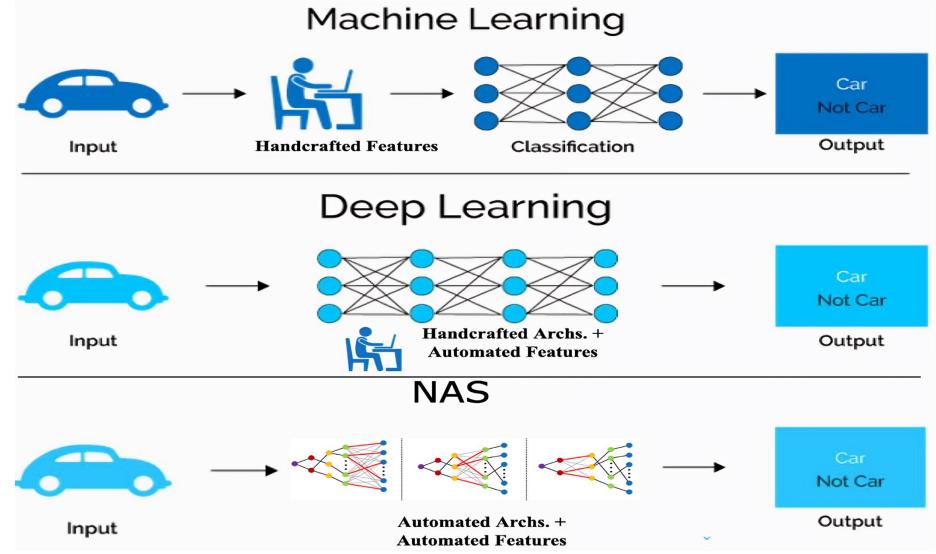
January 3~5, 2025 – Bangkok, Thailand

Efficient Self-Supervised Neural Architecture Search

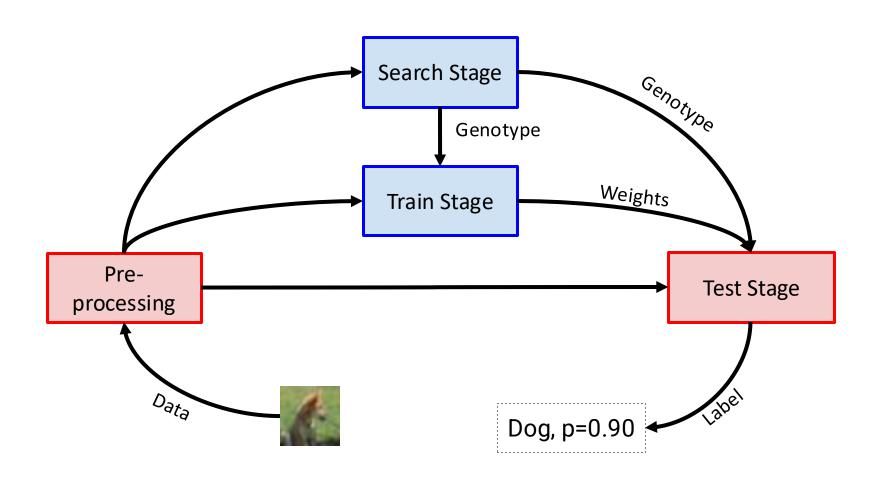
Presenter: Sri Aditya Deevi

ISBN: 979-8-3315-0782-4

Motivation



Bird's Eye View



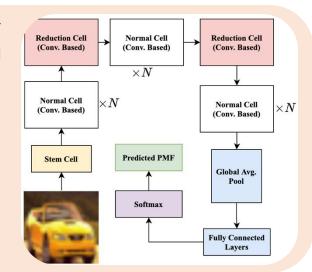
Proposed Approach: Key Elements

Differentiable Architecture Search

Search of Neural Architectures based Bilevel optimization using gradients.

$$egin{array}{ll} \min_{lpha} & \mathcal{L}_{val} \left(w^*(lpha), lpha
ight) \ & ext{s.t.} & w^*(lpha) = \mathop{\mathsf{argmin}}_w & \mathcal{L}_{train}(w, lpha) \ & w
ightarrow & ext{Network Weights} \ & lpha
ightarrow & ext{Architecture (Ops) Weights} \end{array}$$

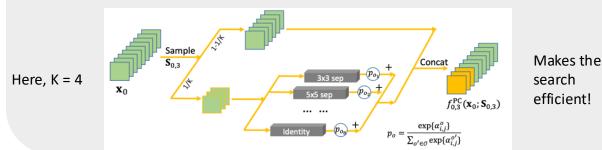
 Micro search for convolutional operation based computational "cells".



Partial Channel Connections

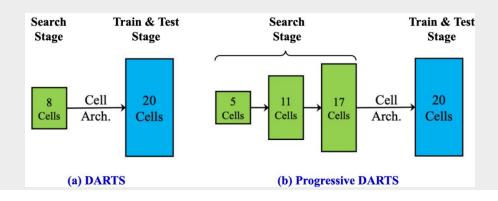
• Idea: Randomly sample (1/K) of the total channels for operation selection.

$$f_{i,j}^{ ext{PC}}\left(\mathbf{x}_{i};\mathbf{S}_{i,j}
ight) = \sum_{o \in \mathcal{O}} rac{\exp\left\{lpha_{i,j}^{o}
ight\}}{\sum_{o' \in \mathcal{O}} \exp\left\{lpha_{i,j}^{o'}
ight\}} \cdot o\left(\mathbf{S}_{i,j}*\mathbf{x}_{i}
ight) + (1-\mathbf{S}_{i,j})*\mathbf{x}_{i} \quad igg| \quad \mathbf{S}_{i,j} o ext{Sampling Mask}$$



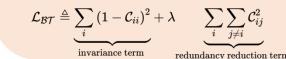
Progressive Search

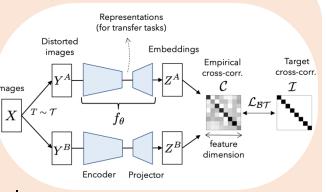
Bridges the "Depth Gap" between search and evaluation (Certain ops. might be preferred in deep networks)



Barlow Twins Self-Supervision

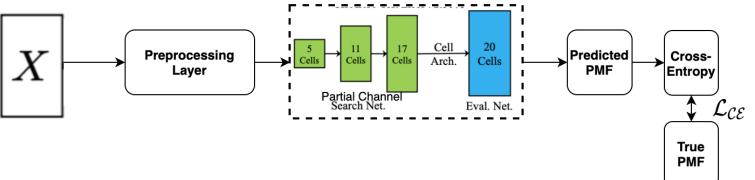
- Optimizing loss to make crosscorrelation close to identity matrix:
 - ✓ DNN learns latent feature vectors
 - √ Ignore/generalize distortions
 - ✓ Reduces redundancy





$$\mathcal{C}_{ij} riangleq rac{\sum_{b} z_{b,i}^{A} z_{b,j}^{B}}{\sqrt{\sum_{b} \left(z_{b,i}^{A}
ight)^{2}} \sqrt{\sum_{b} \left(z_{b,j}^{B}
ight)^{2}}}$$

Proposed Approach: Illustrative Overview



Vanilla PCP DARTS

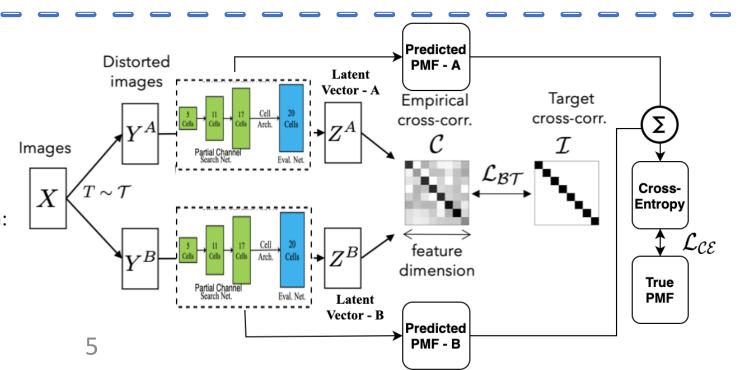
- Salient Features are:
 - ✓ DARTS bilevel optimization framework
 - ✓ Partial Channel connections for efficiency
 - ✓ Progressive search for bridging depth gap
 - ✓ Supervised Loss for Search and Classification

Self-Supervised PCP DARTS

- Salient Features are:
 - ✓ DARTS bilevel optimization framework
 - ✓ Partial Channel connections for efficiency
 - ✓ Progressive search for bridging depth gap
 - ✓ Mix. of Self-Supervised & Supervised Loss for Search:

$$\mathcal{L} = ext{ss_factor} \, imes \mathcal{L}_{\mathcal{BT}} + (1 - ext{ss_factor}) \mathcal{L}_{\mathcal{CE}}$$

✓ Supervised Loss for Classification



Notable Results & Analyses

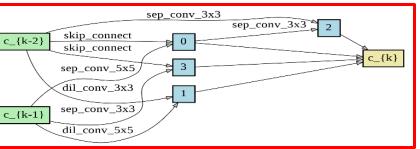
- Based on some experiments conducted on CIFAR-10 dataset we found that (quantitatively):
 - Time taken for Architecture Search: PC-DARTS ≤ PCP-DARTS < P-DARTS</p>
 - Test Accuracy : PC-DARTS < PCP-DARTS < P-DARTS

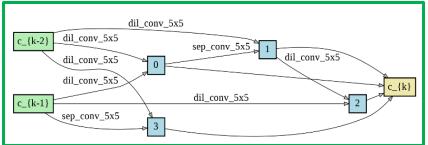
PC → Partial Channel connections
P → Progressive

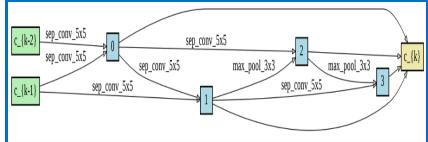
Vanilla PC-DARTS Normal Cell

Vanilla PCP-DARTS Normal Cell

SS(0.75) PC-DARTS Normal Cell







- Some interesting observations comparing the above searched architectures are:
 - Vanilla PCP-DARTS has less number of skip connections and more depth than Vanilla PC-DARTS.
 - Self-Supervised Architecture Search leads the network to have more depth.
 - Parameter less operations like skip-connections are preferred in PC-DARTS as compared to PCP-DARTS.

Notable Results & Analyses

• We also tested the robustness of our methods by generating adversarial test examples:

Fast Gradient Sign Method (FGSM)

$$X^{adv} = X + \epsilon \; ext{sign} \left(
abla_X J \left(X, Y_{ ext{true}}
ight)$$

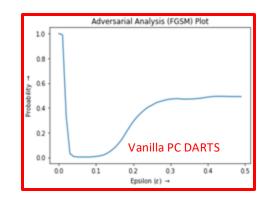
where

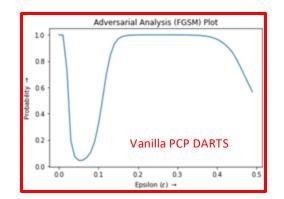
X = original (clean) input

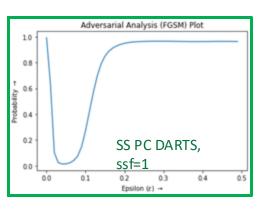
 $X_{adv} =$ adversarial input

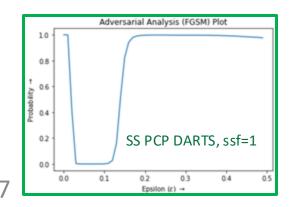
 $\epsilon=\,$ magnitude of adversarial perturbation

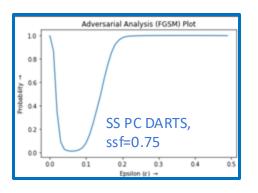
 $\nabla_X J(X, Y_{true}) = \text{ gradient of loss function w.r.t to input } (X)$

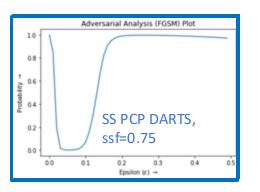












Conclusion

- We presented efficient neural architecture search algorithms to address the high resource demands of traditional handcrafted neural architectures.
- We conducted experiments in both fully supervised and self-supervised settings, utilizing a combined loss function of supervised cross-entropy and self-supervision loss to guide the search for optimal architectures.
- We analysed performance on CIFAR-10, demonstrating that the proposed methodology balances time and accuracy, achieving results with less than 3% test error, close to state-of-the-art benchmarks.
- We provided interesting analyses that indicate the effectiveness of our proposed methods while transfer-training as well as their robustness in presence of adversarial noise.

IMCOM 2025

International Conference on Ubiquitous Information Management and Communication

THANK YOU!

Efficient Self-Supervised Neural Architecture Search

Sri Aditya Deevi*

Mission Simulation Group

U.R. Rao Satellite Centre, ISRO

Bengaluru, India
saditya@ursc.gov.in

Ravi Kumar L

Mission Simulation Group

U.R. Rao Satellite Centre, ISRO

Bengaluru, India
rkkumarl@ursc.gov.in

Asish Kumar Mishra*

Mission Simulation Group

U.R. Rao Satellite Centre, ISRO

Bengaluru, India
asishkm@ursc.gov.in

Bharat Kumar G V P

Mission Simulation Group

U.R. Rao Satellite Centre, ISRO

Bengaluru, India
bharat@ursc.gov.in

Deepak Mishra

Department of Avionics

Indian Institute of Space Science and Technology

Thiruvanathapuram, India

deepak.mishra@iist.ac.in

Murali Krishna Bhagavan G

Mission Simulation Group

U.R. Rao Satellite Centre, ISRO

Bengaluru, India
bhagavan@ursc.gov.in

dsriaditya999@gmail.com

https://www.sriadityadeevi.com

