
Autonomous Robotic Grasping

A project report submitted

in partial fulfillment for the award of the degree of

Bachelor of Technology

in

ECE (Avionics)

by

Sri Aditya Deevi

Department of Avionics

Indian Institute of Space Science and Technology
Thiruvananthapuram, India

May 2022

Certificate

This is to certify that the project report titled Autonomous Robotic Grasping submitted by
Sri Aditya Deevi, to the Indian Institute of Space Science and Technology, Thiruvananthapuram,
in partial fulfillment for the award of the degree of Bachelor of Technology in ECE
(Avionics) is a bona fide record of the original work carried out by him under my supervision.
The contents of this project report, in full or in parts, have not been submitted to any other
Institute or University for the award of any degree or diploma.

Dr. Deepak Mishra
Professor and Head of Department

Dr. Deepak Mishra
Professor and Head of Department

Place: Thiruvananthapuram
Date: May 2022

Declaration

I declare that this project report titled Autonomous Robotic Grasping submitted in partial
fulfillment for the award of the degree of Bachelor of Technology in ECE (Avionics)
is a record of the original work carried out by me under the supervision of Dr. Deepak
Mishra, and has not formed the basis for the award of any degree, diploma, associateship,
fellowship, or other titles in this or any other Institution or University of higher learning. In
keeping with the ethical practice in reporting scientific information, due acknowledgments
have been made wherever the findings of others have been cited.

Place: Thiruvananthapuram Sri Aditya Deevi
Date: May 2022 (SC18B080)

III

This project report is dedicated to my Mom and Dad.

Acknowledgements

I would like to thank my adviser, guide and mentor, Prof. Deepak Mishra, for his constant
support and encouragement throughout the project. He supported me and he was always
more than willing to help me in clearing my doubts and participate in discussions. These
insightful discussions and ideas provided by him were invaluable for successfully realizing
various aspects of this project.

It has been a great learning experience and opportunity to grow personally and academically.

Furthermore, I would like to express my deep and sincere gratitude to the Department of
Avionics and the Indian Institute of Space Science and Technology, Thiruvananthapuram
for granting me this opportunity as well as the resources to carry out this project.

I also sincerely thank everyone else who helped me in realizing this work successfully.

Sri Aditya Deevi

VII

Abstract

The primary premise behind vision-based Autonomous Robotic Grasping is the ability

of a robot to sense and "perceive" its environment to interact with and impact diverse

objects of interest by grasping them using vision-based sensors. Incorporating such a

critical ability to grab an object in a robotic arm to do certain tasks might be advantageous

in many disciplines. Industrial robots, for example, may aid human experts in completing

diverse and repetitive processing activities such as pick-and-place, assembly, glue dispensing,

material finishing, packaging, material removal, and quality inspection, while domestic

robots can assist elderly or disabled individuals with their day-to-day grasping chores. This

work is mainly focused on developing effective approaches for two challenging Autonomous

Robotic Grasping tasks encountered universally, namely: Task I : Grasping Various Object

in Diverse Environments and Task II : Dynamic Grasping of Moving Objects. In Task I,

potent Deep Reinforcement Learning algorithms are developed to train a robotic arm to

grasp novel objects in random unforeseen scenes, whereas as a part of Task II, Deep

Learning and Inverse Kinematics methods are used in tandem, as a part of a dynamic

grasping pipeline, to make the robotic arm grasp known objects, whose 3D model is

available apriori, moving in an unspecified trajectory. Extensive experimentation and analysis

is performed to evaluate the performance of the presented approaches. Furthermore, basic

tasks for laying the foundation of developing a perception based intelligent “real” robotic

grasping system are explored, using a Kinova robotic arm.

IX

Contents

Acknowledgements VII

Abstract IX

Abbreviations XV

1 Introduction 1

1.1 Problem Statement and Objectives . 1

1.2 Basic Description of Robotic Arms Utilized 2

1.3 Report Organization . 3

1.4 Key Contributions . 4

2 A Brief Review of Literature 6

2.1 Typical Robotic Grasping System . 6

2.2 Categorizing Grasping Approaches . 7

2.3 Overview of Related ARG Approaches 8

2.4 Relevance of ARG Systems . 13

2.5 Challenges of ARG . 14

2.6 Chapter Summary . 15

3 Task I - Grasping Various Objects in Diverse Environments 16

3.1 Task Formulation . 17

CONTENTS

3.1.1 Observation Space . 17

3.1.2 Action Space . 19

3.1.3 Reward Function . 20

3.2 Approach Design . 20

3.2.1 A Brief Overview of RL . 20

3.2.2 Relevant DRL Algorithms . 22

3.2.3 High Level Block Diagram . 24

3.3 Pictorial Demonstration . 25

3.4 Implementation Details . 26

3.5 Deep Learning (DL) Architectures . 30

3.5.1 Octree Processing . 30

3.5.2 Feature Extraction Backbone . 32

3.5.2.1 Model-1 : Vanilla O-CNN 33

3.5.2.2 Model-2 : Residual O-CNN 34

3.5.2.3 Model-3 : O-AHRNet 35

3.5.3 Actor-Critic Heads . 43

3.5.3.1 Vanilla Architectures 43

3.5.3.2 Innovations in Architectures of Heads (Digression) . . . 44

3.6 Chapter Summary . 45

4 Task II - Dynamic Grasping of Moving Objects 47

4.1 Task Description . 48

4.2 A Note on Inverse Kinematics (IK) . 48

4.3 Integral Components of the Approach : An Overview 49

4.3.1 Object Pose Retrieval . 49

4.3.2 Object Pose Prediction . 50

4.3.3 Grasp Database . 50

XI

CONTENTS

4.3.4 Grasp Ranking Functions . 51

4.3.4.1 Reachability Awareness 52

4.3.4.2 Motion Awareness . 54

4.3.4.3 Integration of Ranking Functions 54

4.3.5 Adaptive Trajectory Synthesis . 55

4.4 Algorithmic View of the Approach . 57

4.5 Pictorial Demonstration . 59

4.6 Implementation Details . 60

4.7 Object Pose Prediction : Approach Design 63

4.7.1 Need for Pose Prediction . 63

4.7.2 Method-1 : Kalman Filter . 63

4.7.3 Method-2 : Multi Layer Perceptron (MLP) 68

4.7.4 Method-3 : Long Short Term Memory Network (LSTM) 69

4.8 Chapter Summary . 71

5 Results and Inferences 72

5.1 Task-1 : Grasping Various Objects in Diverse Environments 72

5.1.1 General Configuration and Hyperparameter Details 72

5.1.2 Test Setup and Evaluation Metrics 73

5.1.3 Results and Analysis . 74

5.1.4 Summary of Notable Experiments 87

5.2 Task-2 : Dynamic Grasping of Moving Objects 88

5.2.1 Configuration and Hyperparameter Details 88

5.2.2 Test Setup and Evaluation Metrics 90

5.2.3 Results . 90

5.2.4 Inferences . 93

5.2.5 Summary of Notable Experiments 94

XII

CONTENTS

5.3 Chapter Summary . 95

6 Setting up a “Real” Robotic Grasping System 96

6.1 Kinova j2s7s300 Robotic Arm . 96

6.1.1 General Details . 96

6.1.2 Integration with MoveIt . 98

6.2 Intel Realsense D415 RGBD Camera . 101

6.3 Hand-Eye Calibration . 102

6.3.1 Types of Setup . 102

6.3.2 Problem Description and Solution Theory 103

6.3.3 Solution Approach . 105

6.4 Blind Pick and Place . 108

6.4.1 Different Stages of the Task . 109

6.4.2 Modelling the Sidewall Obstacles 109

6.4.3 Pictorial Demonstration . 111

6.5 Chapter Summary . 112

7 Conclusion and Future Work 113

7.1 Conclusion . 113

7.2 Future Work . 115

Bibliography 116

Bibliography 117

XIII

Abbreviations

ARG Autonomous Robotic Grasping

DoF Degrees of Freedom

RL Reinforcement Learning

NN Neural Network

CNN Convolutional Neural Network

FCN Fully Convolutional Neural Network

MDP Markov Decision Process

SGD Stochastic Gradient Descent

DL Deep Learning

DRL Deep Reinforcement Learning

FK Forward Kinematics

IK Inverse Kinematics

TD Temporal Difference

DDPG Deep Deterministic Policy Gradient

TD3 Twin Delayed Deep Deterministic Policy Gradient

SAC Soft Actor Critic

TQC Truncated Quantile Critics

ROS Robot Operating System

KDL Kinematics and Dynamics Library

XV

CONTENTS

OMPL Open Motion Planning Library

FE Feature Extractor

O-Conv Octree based Convolution Operation

O-Maxpool Octree based Maxpool Operation

O-CNN Octree Based Convolutional Neural Network

SE Squeeze and Excite

ECA Efficient Channel Attention

GAP Global Average Pooling

GAN Generative Adversarial Networks

RRT Rapidly-exploring Random Trees

PRM Probabilistic RoadMaps

CHOMP Covariant Hamiltonian Optimization for Motion Planning

STOMP Stochastic Trajectory Optimization for Motion Planning

SDF Signed Distance Field

MLP Multi Layer Perceptron

RNN Recurrent Neural Network

LSTM Long Short Term Memory network

HR High Resolution

AC Actor Critic

SN Spectral Normalization

XVI

Chapter 1

Introduction

1.1 Problem Statement and Objectives

Autonomous Robotic Grasping (ARG) is key to attaining the promise of intelligent robotics.
The primary premise underlying vision-based ARG is the capacity of a robot to “perceive"
its surroundings using vision sensors to constructively interact with various objects to
accomplish a given task of interest. However, the real world consists of many highly
variable aspects. It is neither tractable nor feasible for a robot to accurately represent
its surroundings, the things in it, and the complex interactions among them. Therefore,
learning is crucial in such intelligent autonomous systems to acquire the ability to perform
skilled manipulation tasks. Effective ARG systems have many applications in various
domains. They can be deployed in industries, spacecraft, restaurants, and homes to perform
or assist human experts in performing versatile and repetitive manipulation tasks. In this
project, the following two challenging ARG tasks (Objectives) are considered which are
almost ubiquitously found problems that an intelligent robotic arm can automate:

• Grasping Various Objects in Diverse Environments – This task aims to use Deep
Reinforcement Learning techniques to make a robotic arm intelligently grasp novel
objects, i.e. objects whose 3D model is not known apriori, in novel random scenes.

• Dynamic Grasping of Moving Objects – This task aims to use Deep Learning and
Inverse Kinematics based Motion Planning techniques to help a robotic arm in learning
how to grasp dynamic items of interest, whose 3D model is known apriori.

In addition, the basic steps and tasks necessary for performing complex ARG tasks in a
“real” robotic setup are taken into account as a part of the problem statement of this work.

1

Chapter 1. Introduction

1.2 Basic Description of Robotic Arms Utilized

One of the most important components of any ARG setup is the robotic arm. In this section,
a brief description of the robotic arms that were utilized either in the real setup or the
simulated setup is provided.

1.2.1 Kinova Jaco2 Arm

j2s7s300 arm is a 7-DoF flexible service
robotic arm manufactured by Kinova. It
has extreme portalbility, ultra low-weight
and excellent payload-to-weight ratio. The
gripper considered is a three fingered KG-3

gripper.

Feature Value

Max. Payload 2.1 Kg
Weight 5.5 Kg
Range 985 mm

No. of Joints 7

Table 1.1: Some features of
Kinova j2s7s300 arm

Fig. 1.1: Kinova Jaco2 Arm
(Used in Real Setup)

1.2.2 UR5 Arm

Fig. 1.2: UR5 Arm
(Used in Simulated Setup)

Feature Value

Max. Payload 5 Kg
Weight 20.6 Kg
Range 850 mm

No. of Joints 6

Table 1.2: Some features of
UR5 arm

The UR5 is a lightweight, adaptable,
collaborative industrial robotic arm
manufactured by Universal Robots.

2

Chapter 1. Introduction

It is designed to perform versatile and repetitive manual tasks consisting of payloads
upto 5 Kg efficiently. The end effector considered is a Robotiq two-fingered adaptive
gripper.

1.2.3 Franka Emika Panda Arm

Panda arm is a 7-DoF collaborative robotic
arm developed by Franka Emika. It has high
sensitivity, agility and ease of programming.
The gripper attached to the arm is a
two-fingered parallel FE gripper.

Feature Value

Max. Payload 3 Kg
Weight 18 Kg
Range 855 mm

No. of Joints 7

Table 1.3: Some features of
Panda arm

Fig. 1.3: Panda Arm
(Used in Simulated Setup)

1.3 Report Organization

This project report on “Autonomous Robotic Grasping" is organized as follows :

? Chapter 2 provides a brief review of literature to setup the overall context for ARG
approaches studied in this work, while explaining relevance and typical challenges
associated with ARG.

? Chapter 3 deals with developing effective DRL algorithms for Task I - Grasping
Various Objects in Diverse Objects which involved training a robotic arm agent to
grasp unseen objects in novel environments.

3

Chapter 1. Introduction

? Chapter 4 provides detailed descriptions for the approach used for Task II - Dynamic
Grasping of Moving Objects, where the aim is to make the robotic arm grasp known
objects moving in an unknown trajectory.

? Chapter 5 includes the results obtained by deploying the approaches used for both
the tasks in various test scenarios.

? Chapter 6 specifies the various tasks performed for setting up a “real” robotic grasping
setup, while discussing the challenges associated.

? Chapter 7 concludes the report, while providing ideas for future work to stimulate
further research.

1.4 Key Contributions

Some of the major contributions made as part of this work and presented in the report are
listed as follows :

X Demonstration of a complete end-to-end DRL pipeline, where a robotic arm was
deployed in various random simulation scenes to learn a robust policy for grasping
novel objects.

X Design and development of a series of octree-based convolutional neural network
models for effective feature extraction in an Actor-Critic setting. The model development
was focused to demonstrate the need for developing and incorporating complex DL
models in DRL algorithms.

X Incorporation of developed models in the DRL pipeline demonstrating improved
performance on the first task iteratively.

4

Chapter 1. Introduction

X Extensive comparison of various experiments conducted in the DRL setting on the
first task. Some experiments involving the incorporation of novel DL ideas, such
as advanced normalization techniques and improved architecture of Actor and Critic
Networks, motivated the need to research DRL analogues for them.

X Demonstration of a Dynamic Grasping pipeline, where a robotic arm was deployed
in a simulation scene to grasp dynamic objects whose 3D model is known apriori but
the motion trajectory being followed by them is unknown.

X Incorporation of various object pose prediction algorithms into the dynamic grasping
system and demonstrating improved performance on the second task.

X Extensive experimentation, comparison and inference based on obtained results, for
all the developed methods as a part of the second task.

X Setting up a complete “real” robotic grasping setup mainly consisting of a Kinova
j2s7s300 arm and Intel Realsense D415 camera.

X Successful demonstration of various tasks such as Hand-Eye Calibration & Blind
Pick and Place, in the constrained robotic workspace of IIST’s CVVR Laboratory.

Note

The implementation code and other files, used for realizing this work, can be found at :

https://drive.google.com/drive/folders/

1nzImtpRu6TpJ83co94xY-qV8qdUJw-u2?usp=sharing

5

https://drive.google.com/drive/folders/1nzImtpRu6TpJ83co94xY-qV8qdUJw-u2?usp=sharing
https://drive.google.com/drive/folders/1nzImtpRu6TpJ83co94xY-qV8qdUJw-u2?usp=sharing

Chapter 2

A Brief Review of Literature

Autonomous Robotic Grasping aspires to give robots the capacity to “see” and interact
with their surroundings via the efficient execution of skilled manipulation tasks. It is a
long-standing scientific subject that has received significant attention throughout the years.
It is used in a wide range of locations, including industries, residences, labs, and spaceships.

This chapter will discuss some fundamental ideas of ARG while illustrating a few of
the works related to the problem statement at hand.

2.1 Typical Robotic Grasping System

A robotic grasping system [1] is shown
in Fig. 2.1 where a robotic arm is
fitted with an RGB-D camera and an
end-effector to pick the object of interest
kept on the flat workspace.
Different systems can employ different
types of grippers and different types of
input data, as described in Fig. 2.2 and
Fig. 2.3 repectively, depending upon the
application and availability. Fig. 2.1: An illustration of a robotic grasping

system.

6

Chapter 2. A Brief Review of Literature

Fig. 2.2: Types of grippers for a robotic arm.
Fig. 2.3: Typical inputs available to a grasping
system from a variety of visual sensors.

2.2 Categorizing Grasping Approaches

Grasping is a fundamental skill critical to perform “skilled" manipulation tasks such as :

• Pick & Place

• Assembly

• Manipulating deformable objects

• Handling common hand tools

• Dynamic Grasping of moving objects

Examining previous works in literature, two broad classes of grasping approaches can

be identified as follows:

7

Chapter 2. A Brief Review of Literature

(1) Grasping Known Objects [2][3]

• 3D Model of Object of interest
required

• Pose Estimation + Grasp
(Trajectory) planning

• Generally, one model trained per
object

• Objects can be dynamic

(2) Grasping “Unknown" Objects [4][5]

• 3D Model of Objects not required

• Deep RL based approaches can be

used

• One agent trained can have a

policy that can grasp diverse

objects

2.3 Overview of Related ARG Approaches

In this section, reviews of some of the related research works from the ARG literature are
specified.

2.3.1 Review of Paper-[6]

Fig. 2.4: Complete Pipeline of the GG-CNN approach. The CNN generates pixel-wise maps describing
the quality, angle and width attributes of the grasp. Based on these best grasp is selected and given to the
Controller to grasp the object.

An object-agnostic, real-time "generative" grasp construction technique is proposed by
[6] that can prove to be helpful for closed-loop grasping. Some of the key contributions of
the paper are :

8

Chapter 2. A Brief Review of Literature

(i) The method does not depend on sampling grasp candidates, but instead generates
grasp poses pixel-by-pixel.

(ii) Light-weight CNN with fewer parameters to minimise latency

Fig. 2.5: Ground Truth Grasp Maps for
Grasp Quality (QT), Grasp Angle (�T)
and Grasp Width (WT).

Basically, a grasp is represented by g =

(p,�, w, q) :

! Pose of the Gripper (p,�)

! Width of the Gripper (w)

! Quality (chances of success) of
grasp (q)

From the grasp maps M(I) = G =

(�,W,Q) 2 R3⇥H⇥W , the best grasp in
image space is obtained by :

g̃⇤ = max
Q

G

Fig. 2.5 describes the procedure for generating the ground truth maps (labels) for training
the network.

Two types of grasp execution approaches were considered :

1. Open Loop Grasping

2. Closed Loop Grasping

9

Chapter 2. A Brief Review of Literature

2.3.2 Review of Paper-[5]

This work basically, considers the task of Robotic Kit Assembly, to learn to generalize to
new unseen kits/objects. Some of the important aspects of this paper are :

(i) Establish the kit assembly job as a problem of matching shapes, with the objective of
learning a shape discriminator that sets up geometric correspondences between item
surfaces and the locations of their placement targets.

(ii) Data collection system that collects ground truth object-to-location correspondences
without the need for supervision.

Fig. 2.6: Bird’s eye view of different modules present in the Form2Fit pipeline.

Inputs of the approach are object heightmap Iobj and kit heightmap Ikit. Outputs are
predictions of :

• Location of the pick, p

• Location of placement, q, and

• an angle ✓ ! measures difference in orientation between the placement and pick
locations.

10

Chapter 2. A Brief Review of Literature

Fig. 2.7: Form2Fit in action. The system with
suction effector generalises to new items and kits
by leveraging data-driven priors of shapes learnt
during training.

The system has three modules :

1. Suction network ! Pixel-by-pixel
forecasts of success probabilities
(also known as affordances) of
picking using a suction cup.

2. Placing network ! Placement
success percentages on the kit are
predicted pixel by pixel.

3. Matching network ! pixel-wise,
rotation-sensitive feature
descriptors to match between
items and their corresponding
fitting locations in the kit.

Self-monitoring from disassembly in reverse is used to teach the system :

• Utilizing random selection and trial & error to deconstruct a completely constructed
kit.

• To get supervision labels for the suction, placement, and matching networks, reverse
the dismantling procedure.

2.3.3 Review of Paper-[4]

[4] demonstrates that model-free deep Reinforcement Learning can be used to gain an
understanding of the synergistic interactions between grasping and pushing Some of the
important contributions are :

(i) The process of self-supervised trial and error is used for development of joint pushing
and grasping policies.

(ii) Policies trained end2end whose input is visually perceivable observations and output
is Expected Return (in Q-values).

The problem is treated as an MDP where the aim of the agent is to follow a strategy that
will improve the discounted sum of future rewards. The state is characterized by RGB-D

11

Chapter 2. A Brief Review of Literature

Fig. 2.8: Overview of the complete system and the different modules present.

heightmap picture of the scene. Off-policy Q-learning is utilized to guide the policy, where
a deterministic but greedy policy picks actions by maximizing the Q⇡ (st, at).

The definitions of two motion primitive
activities are:

1. Pushing ! 10 cm push in 16
different directions.

2. Grasping ! move 3 cm below and
grasp in 16 different orientations.

a = (, q) | 2 {grasp, push},

q ! p 2 st

Rewards are :

1. 1 if a grasp is successful

2. 0.5 for efforts that produce
observable changes in the
environment

Two Fully Convolutional Neural Networks (FCNs) are considered, one for each motion
primitive :

• Two parallel 121-layer DenseNet towers ! Channel Wise Concat. + 2 additional
1 x 1 conv. layers ! Bilinear Upsampling.

• One tower takes input as RGB and other takes DDD map.

Q-Learning was implemented through the Huber Loss function, as it is less sensitive to
outliers as compared to Mean Squared Loss :

12

Chapter 2. A Brief Review of Literature

Li =

8
<

:

1
2

⇣
Q✓i (si, ai)� y

✓
�
i

i

⌘2
, for

���Q✓i (si, ai)� y
✓
�
i

i

��� < 1���Q✓i (si, ai)� y
✓
�
i

i

���� 1
2 , otherwise

The optimizer used is the SGD with momentum along with Weight Decay. In addition
to these, prioritized Experience Replay for training was used and "-greedy exploration
strategy was considered.

All the models were trained by self-supervision :

! n toy blocks are dropped randomly in the workspace

! Automatic data gathering via trial and error until the workspace is completely devoid
of items

! Afterwards, a total of n items are thrown onto the workspace at random locations
again.

Both real and simulated experiments were conducted and many ablation studies were
done.

2.4 Relevance of ARG Systems

ARG systems have an immense capability to add value by enhancing the operations of
traditional approaches. They have advanced to the point that they can operate around the
clock with a higher degree of consistency in terms of quality and productivity, completing
activities that people are unable or unwilling to undertake. Their relevance is captured by
understanding the humongous benefits that they offer:

(i) Enhance efficiency and productivity by lowering the rate of mistake, re-work, and
risk.

13

Chapter 2. A Brief Review of Literature

(ii) Increase the safety of workers who operate in high-risk areas.

(iii) Optimize the speed and precision of mundane processes, notably in the warehouse
and manufacturing industries.

(iv) Work with humans in a safe and collaborative manner so that people can give more
attention to strategic tasks that are difficult to automate.

(v) Increase income through increasing the rate of flawless order fulfilment, the speed of
delivery, and ultimately, the level of customer happiness.

2.5 Challenges of ARG

Despite the tremendous advances made in the fields of AI and intelligent robotics, there are
still some crucial challenges [7] that need to be addressed by ARG researchers:

1. Radically enhancing the ability of the robot to learn from less number of samples or
demonstrations, so that the learning algorithms become more resource efficient.

2. Imbibing the concept of safe robotic manipulation workspaces into the grasping
algorithms so that damage avoidance can be guaranteed at different stages of trajectory
execution.

3. Development of task agnostic algorithms that may have the capacity to transfer well
among drastically different grasp task families.

4. Forming a proper framework of continual learning where learned components from
regular interactions of the robotic arm with the external environment can be used
seamlessly for the upcoming interactions.

5. Coming up with robust algorithms that can exploit “common-sense” knowledge and
explore using strategies with proper reasoning.

6. Providing the ARG system with a framework to infuse useful data from multiple
sensor modalities to accomplish the task at hand more effectively.

14

Chapter 2. A Brief Review of Literature

2.6 Chapter Summary

This chapter briefly reviews the literature to set up the overall context for ARG approaches
studied in this work. In the later sections, various details regarding the relevance and
typical challenges associated with ARG are discussed. The next chapter provides a detailed
description of Task I : Grasping Various Objects in Diverse Environments.

15

Chapter 3

Task I - Grasping Various Objects in Diverse
Environments

This chapter describes various elements involved in realizing the first task involving picking
up novel objects across varied unforeseen environments. Deep Reinforcement Learning
(DRL) techniques are mainly utilized in this work. Details regarding the formulation of the
task, design of the entire approach, implementation details and architectures of the various
DL models utilized are illustrated in this chapter. Some of the ideas for the task design
were taken from [8]. The results of various experiments conducted as a part of this task
will be presented in a forthcoming chapter.

Fig. 3.1: Illustration of basic problem setup of Task-1. Note the use of an RGB-D camera as a perception
module.

16

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.1 Task Formulation

The first task taken up, Grasping Various Objects in Diverse Environments, is conceived as
a Markov Decision Process (MDP), where the agent is a high-level controller for sequential
decision making in the forms of actions in cartesian space. The following episodic formulation
is considered :

? Episode Start ! New set of objects (3D Model is not known) is given.

? During Episode ! Aim is to grasp an object and lift in 12.5 cm above the ground.

? Episode End ! Success (or) 100 time-steps*{Failure}

3.1.1 Observation Space

The following observations were considered that would be further processed:
• Visual Octree Observations – The

following data is organized in the finest
leaf octants (primitive features) to form
the input signal :

⌅ average unit normal vector, n̄

⌅ average distance from centre, d̄

⌅ average colour, rgb

• Proprioceptive Observations – State of
the gripper (open/closed) and gripper pose
(position + orientation) contribute to this.

Fig. 3.2: Visual illustration of hierarchical octree data
structure at different depths, d. Note that, RGB image
and depth maps are used to make coloured point clouds,
which are further processed to form octrees.

A Note on Octree Observations

Why not RGB or RGB-D observations ?

2D RGB or 2.5 RGB-D image observations can be processed by 2D CNNs but they do not
provide required level of generalisation over the depth and spatial orientation [8]. Hence,

*Note that here time-step indicates the minimum interval where physics parameters can be changed in
the simulation. Ignition Gazebo allows tunablity in time-step size so that the simulation can run faster than
real-time, real-time or even slower than real-time.

17

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

there is a need for a compact 3D data structure that provides both tractability and detail.

Background on Octrees

Some other possible 3D representations of data other than octrees are :

• 3D Mesh ! Irregular 3D shape ! Typical CNNs cannot be used.

• Full Voxels ! Regular 3D shape ! CNNs can be used but not efficiently.

Fig. 3.3: Example of Mesh
representation

Fig. 3.4: Example of Full Voxel
representation

Octree is a 3D representation as a hierarchical tree
(see Fig. 3.2) where each cell can be recursively
decomposed into eight octants. Note that, size
of voxels can be varied according to object
occupancy. Octree based observations provide
more spatial generalization than 2D RGB (or) 2.5
RGB-D images while being more tractable and
compact than full voxel representation.

Fig. 3.5: Chronological Order of various pre-processing steps that are involved in the formation of a Octree
3D representation. On the extreme right, the data stored in a finest leaf octant (See Section 3.1.1) is pictorially
illustrated.

18

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

In Octree Data Structure, each octant has [9] :

• Input Signal

• Shuffle Keys

• Labels

Input Signal, which can be regarded as the primitive features extracted, is the actual
“data” that will be processed to form high-level features. Shuffle Keys and Labels, collectively
known as property vectors, are additional auxiliary data vectors extracted to facilitate
efficient computation. More details regarding efficient implementation of octree processing
will be discussed in Section 3.5.1.

In this work, the maximum octree depth is 4, the observable workspace is a cube of
volume 24⇥ 24⇥ 24 cm3 and metric resolution of leaf octant is {1.5⇥ 1.5⇥ 1.5} cm3.

3.1.2 Action Space

Fig. 3.6: Illustrative representations of different
possible actions that can be predicted by the
agent. The idea is to use optimized traditional
motion planning approaches to execute these
actions without many collisions.

The action space consists of continuous actions in
cartesian space rather than low level joint space
observations. Different possible actions are :

(i) translational displacement, (dx, dy, dz)

(ii) rotation around z-axis, d�

(iii) gripper closing and opening, g

Traditional IK and motion planning approaches
(inbuilt in MoveIt2) used to provide commands
for low-level joint controllers and avoid
self-collisions.

19

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.1.3 Reward Function

It may be generally desirable to give
reward only on success of the episode,
but training might get prolonged due
to sparsity of success through random
exploration. To avoid such problems,
the reward structure shown in Fig. 3.7 is
designed to guide training.

Fig. 3.7: Structure of the Reward Function
The intuition is that the robotic arm should first reach, then touch, then grasp and finally

lift an object without colliding, while acting as quickly as possible. Note that, the theoretical
maximum achievable reward is rmax = 400.

3.2 Approach Design

The task formulation suggests the use of Deep Reinforcement Learning (DRL) algorithms
to learn robust and effective policies to enable this specific grasping task. In this section,
an overview of the RL setup is provided followed by an outline of relevant DRL algorithms
to this work.

3.2.1 A Brief Overview of RL

When an RL agent interacts with the environment sequentially, the aim is to maximise
the total expected return as much as possible for the agent. This problem can be expressed
using MDPs (Markov Decision Processes), which are typically described as a tuple (S, p,A, r).
Here, A and S are the action and state spaces respectively (here, continuous) . The state
transition probability p : S ⇥ S ⇥ A ! [0, 1] denotes the probability density of the
succeeding state s+ 2 S , given current state s 2 S and action a 2 A as :

p
�
s+ | s, a

�
= Pr

�
St+1 = s+ | At = a, St = s

(3.1)

The sum of discounted rewards, r(si, ai) (with a discount factor) that an agent seeks to
maximize is given by :

Gt =
TX

i=t

�i�tr (si, ai) (3.2)

20

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

The behaviour of an agent is defined by a policy ⇡ : S ! A. The action-value
function for taking an action a in state s and then following policy ⇡ is : Q⇡(s, a) =

E⇡ [Gt | At = a, St = s]. For the continuous control problem, the agent’s aim is to discover
the optimal policy, ⇡ : S ! A that maximizes the action-value function :

Q⇤(s, a) = max
⇡

Q⇡(s, a) (3.3)

To make RL scalable to real life problems, the following tricks are commonly utilized:

• Estimating Expectations using Sampling:

E[f(x)] ⇡
1

N

X

i

f (xi) (3.4)

• Approximating Functions by Deep Neural Networks (DNNs):

f(x) ⇡ f✓(x) ; ✓ ! DNN parameters (3.5)

Fig. 3.8: An illustration of various classes of RL algorithms available in Literature

21

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.2.2 Relevant DRL Algorithms

In this work, the main focus is on the usage of Actor-Critic algorithms. These algorithms
can be viewed as a combination of value-based and policy-based methods. Actor network
learns the parametrized policy ⇡(a | s, ✓) whereas Critic network critiques the actor based
on how good the selected action is by estimating the value function Q(s, a) by minimising
the Temporal Difference (TD) error �t :

�t = rt + �max
a0

Q⇡ (st+1, a
0)�Q⇡ (st, at) (3.6)

Some popularly used Model-free , Off-policy Actor-Critic algorithms relevant to this
work are briefly described as follows :

1. Deep Deterministic Policy Gradient (DDPG) : [10]

• Off-policy algorithm and makes use of Experience Replay buffer to be sample-efficient.

• Deals with continuous action spaces and trains a deterministic policy.

• Target networks are utilized to ensure training stability, whose weights are
exponentially averaged versions of the original network.

• To accommodate exploration, noise is added to actions during training.

2. Twin Delayed Deep Deterministic Policy Gradient (TD3) : [11]

• It is an extension to DDPG, designed to alleviate the typical Q-value overestimation
bias.

• The following three tricks (contributions) are incorporated into the framework
to performance imporvement :

(i) Use of two individual critics where the smaller of the two is used to compute
the Temporal Difference (TD) error.

(ii) Updating actor network less often than critic networks.

(iii) Addition of smoothing noise for the actor network, which makes it difficult
for the policy to capitalize on the errors of the critic.

22

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3. Soft Actor Critic (SAC) : [12]

• It is one of the state-of-the-art algorithms for continuous control, which inherits
the use of two critics and actor network smoothing noise from the previous
methods.

• It optimizes a stochastic policy and the main addition is the use of entropy-regularized
reinforcement learning framework, where the agent’s aim to learn an effective
policy by optimizing a trade-off between expected return and entropy (analogy
to trading off exploration and exploitation) :

⇡⇤ = argmax
⇡

E⇡

"
TX

t=0

�t (r (st, at) + ↵H (⇡ (· | st)))

#
(3.7)

where entropy is defined as:

H(P) = E
x⇠P

[� logP (x)] (3.8)

• The intuition is that larger entropy leads to more exploration.

4. Truncated Quantile Critics (TQC) : †[13]

• It is a recently added extension to the SAC algorithm, which addresses the
following shortcomings of the previous approaches :

(i) Overestimation control is coarse (two Q-networks and min. is chosen)

(ii) Min. of estimators diminishes the power of the ensemble of approximators.

• The main ideas used in this algorithm are :

(i) It models the distribution of the random return rather than expectation of
the return. The action-value function Q(s, a) of critics is modelled as a
distribution with n-number of atoms.

(ii) To keep the overestimation under control, truncate the right tail of the
return distribution approximation by removing the atoms at the very top
of the distribution.

(iii) Mixture of multiple critics is considered (Ensemble advantage).

†Mainly used in this work

23

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.2.3 High Level Block Diagram

The environment under consideration can provide information of the current state (St) and
reward (rt). The Feature Extractor Backbone processes the state information to form high
level features. Actor network learns the odds of selecting a specific action a in a given state
s as ⇡(a | s, ✓). The critic network estimates action-value function Q(s, a) by minimising
TD error �t, which is used to critique the actor pased on how good the predicted action is.
This process has been illustrated in Fig. 3.9.

Fig. 3.9: Illustrative high level block diagram of the approach used in this work. Note that here, feature
extraction backbone, actor and critic blocks are DL based neural network function approximators.

24

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.3 Pictorial Demonstration

Fig. 3.10: Pictorial Demonstration of Task-1. The keyframes corresponding to various steps of the task are
shown in a chronological manner, in a novel simulation environment with a UR5 arm. Notice that the robotic
arm first reaches a novel object, makes contact with it in a pregrasp, then grasps the object before lifting it
into the air. This marks the end of a successful episode.

25

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.4 Implementation Details

In this section, some aspects related to the implementation of the virtual setup for training
and testing DRL algorithms is discussed. Note that more details regarding the Configuration
and hyperparameters will be provided in Chapter 5, Section 5.1.1.

Simulation Environment

Ignition Gazebo‡ is used as the simulation environment to facilitate realistic rendering. It
is an open-source robotics simulator derived from gazebo. Some of its prominent features
can be listed as follows:

• It allows the use of rendering engines such as OGRE v2 for realistic rendering of
environments with superior quality lighting, textures and shadows.

• It provides access to high performance physics engines through Ignition Physics.

• It is possible to use a variety of virtual sensors, such as 2D/3D cameras, IMU, GPS,
etc., with an additional option to add noise for more realistic data.

• Ignition GUI is a plugin-based graphical interface that allows users to create, inspect,
and interact with your simulations using graphical interfaces.

Middleware Software

ROS2 is used as middleware for this work which handles communication between primary
nodes such as RGBD data stream and processes requests from motion planner and the
simulation environment itself.

Motion Planning

For trajectory generation, solving kinematics and motion planning MoveIt2§ framework is
utilized. There exist two popular methods for generating the motion plan for the robot by
knowing the start and end poses of the end effector:

‡https://ignitionrobotics.org
§https://moveit.ros.org

26

https://ignitionrobotics.org
https://moveit.ros.org

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

1. Joint Interpolated Motion –

! From known start and end poses of the end effector, inverse kinematics is used
to get the intial and final joint angle configuration vectors.

! Linear (vector) interpolation is then done with time parametrization to get motion
plan.

! In this case, the end effector may not follow a straight line path but computational
burden is less.

2. Cartesian Interpolated Motion –

! From known start and end poses of the end effector, directly interpolation of
poses is done (interpolation of translational vector and rotational quaternion)

! Then, we get joint configuration vectors using inverse kinematics at every time
sample for the motion plan.

! In this case, the end effector follows a straight line path in 3D but computational
burden is high.

MoveIt2 is an open-source software library used to plan and execute motion for serial
link manipulators. In this work, the functional modules (See Fig. 3.11) of this package are
extensively used for the purpose of trajectory planning for the pick and place task.

Different packages and algorithms for each functional modules in MoveIt2 motion
planner. The default configuration is utilized, where for Inverse Kinematics, KDL Kinematics

Plugin is used and for Motion planning OMPL Library is used. In OMPL planner, the
RRTConnect algorithm is used to generate the path¶.

Note that, taking the tradeoff between speed and optimality for a given motion planning
problem, MoveIt2 chooses between joint space and cartesian space interpolation.

Perception

During simulation virtual camera is used to provide RGBD data of the scene, which is
further processed into octree observations. Note that, noise is added to this data to account
for real world sensor noise.

¶Samples random valid joint configs. between start and target states and generates path

27

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.11: Different Function Modules and their typical order of usage. This represents the typical flow used
by MoveIt2 package to perform motion planning and execution.

Robotic Arms

In this work, mostly UR5 arm with RG2 gripper and Franka Emika Panda robotic arm are
used for various experiments.

Objects

For training and testing the robotic arm’s performance inside the simulation environment[8],
dataset of scanned objects provided by Google Research is being utilized

Fig. 3.12: Pictorial Representation of various objects being utilized in different stages is shown. Notice how
the test objects are not present in the train subset, to test the performance of the robotic arm on novel objects.

28

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Domain Randomization

A basic strategy for bridging the simulation-reality gap for synthetic data is to randomise
the simulator’s surroundings throughout the training process, rather than training an agent
on a single simulated environment. This exposes the model to a broad variety of environments
during training time. The core concept is that, if the variability in simulation is substantial
enough, models trained in a simulated world will generalise to reality without the need for
extra training or experimentation.

Fig. 3.13: A collection of images depicting the superimposed effect of all domain randomizers applied to the
simulation scenario for both the robotic arms under consideration.

In this work, the following types of domain randomization aspects are considered [8] :

• Object Property Randomizer – A few objects from the dataset under consideration
(See Fig. 3.12) are spawned by varying different inertial and mechanical properties.

• Object Pose Randomizer – The position and orientation of the objects chosen are also
randomized in each episode.

• Environment Randomizer – The ground plane textures are also chosen randomly at
every reset to randomize the visual environment in each episode. Note that, it is made

29

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

sure that the test time material textures are unseen during training time to evaluate
the robot’s performance in novel environments.

• Camera Pose Randomizer – In order to make the training of the agent more robust,
small random disturbances are added to the pose of camera.

• Initial Joint Configuration Randomizer – To make the setting more realistic, the
initial joint angles of the robotic arm are set randomly at the beginning of each
episode.

Framework

Implementation of DRL algorithms from scratch is error prone and time consuming, so for
the implementation of RL algorithms the open source and reliable Stable Baselines3 (based
on PyTorch) framework is used as a baseline for further developement.

3.5 Deep Learning (DL) Architectures

In this section, a detailed description of the different DL architectures designed, for different
parts of the approach as shown in Fig. 3.9, is given. The overall architecture of each
model and related concepts are described in this chapter. More details about the training
configuration and performance evaluation of the various models will be presented in a
forthcoming chapter.

3.5.1 Octree Processing

As mentioned in Section 3.1.1, in octree data structure, each octant consists of input signal
and property vectors [9]. Input signal is the actual “data" that will be processed to form
high-level features, whereas property vectors are additional auxiliary data vectors extracted
to facilitate efficient computation. The property vectors include [9] :

• Shuffle Key –

! 3l bit key for each octant encoding the position in 3D space at depth l.

! In the form of (x1, y1, z1, x2, y2, z2, . . . , xl, yl, zl) where xi, yi, zi 2 {0, 1} denotes
the relative position in parent octant.

30

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

! Octants are sorted according to shuffle keys.

• Label –

! To rapidly determine the parent-child link of the octants at adjoining depths.

! Label p specifies that it is the pth non-vacant octant at at depth l.

! Empty octants are labelled 0.

Now, more details about how some of the typical operations are implemented more
efficiently is discussed [9].

Operations : 3D Convolution

Convolution operator can be written in unrolled form as :

�c(O) =
X

n

X

i

X

j

X

k

W (n)
ijk

· T (n) (Oijk) (3.9)

where:

Oijk ! represents an adjacent octant of O

T (n)(·) ! represents the nth channel of the feature vector associated with associated with Oijk

W (n)
ijk

! represents the weights of convolution

For efficient implementation of Octree 3D convolutions[9], the following tricks were
used :

(i) For performing the convolution operation, we need quick access to the neighbours of
the octant, so hash table H : key(O) 7! index(O) is implemented to search for the
neighbours in constant time.

(ii) Parallelly calculate the 3D convolutions of eight sibling octants by creating a shared
neighbourhood.

(iii) For batch processing, the individual octrees are merged into one super-octree.

31

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Operations : Pooling

In terms of functionality, pooling is primarily concerned with gradually shrinking the
spatial extent of the representation:

• Each of the eight related octants of the same parent are kept in sequence.

• Pick out the largest from every 8 continuously stored elements.

• Depth reduces by one level when a pool layer is used.

Similarly, Transposed Convolution operations are also implemented efficiently.

Fig. 3.14: An illustration of various DL models utilized in the Actor-Critic Algorithm Setting. Note the
stacking of historical observations in the Feature Extraction Backbone.

3.5.2 Feature Extraction Backbone

Now, the various DL models that were designed to improve the Feature Extraction from
Octrees are described. The intuition is that the architectures of the feature extractor, actor
and critic network play a pivotal role in the learning process and hence, designing effective
and efficient architectures can lead to better performance.

Note

At each timestep t observations at t � 1 and t � 2 are also considered and are processed
in separate copies of the backbone before concatenating the final high-level feature vectors
(See Fig. 3.14), to provide temporal context to the agent. Common backbone for processing
observations at all timesteps {t, t � 1, t� 2} was not considered because different type of

32

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

features maybe required to be extracted from different timesteps. This gave better results
than its counterpart experimentally as per [8].

3.5.2.1 Model-1 : Vanilla O-CNN

The baseline architecture [8] of the Octree processing Feature Extraction backbone Vanilla
O-CNN. The complete architecture of Model-1 Vanilla O-CNN is shown in Fig. 3.15.

Fig. 3.15: Architecture of Vanilla O-CNN feature extraction backbone. d in the figure indicates the octree
depth. Note that, this is the architecture for the observation stack at one timestep. The feature extractor is
duplicated for each stack in order to process two historical observations in addition to the current one.

The following are some of the features of this model:

• The input octree to the model has 7 channels (nx, ny, nz, d, r, g, b) as described in
Section 3.1.1.

• The further processing of the octree can be explained by using a Basic Unit, consisting
of a 3D O-Conv, followed by a ReLU non-linearity and then a O-Maxpool operation. The
Basic Unit reduces octree depth by single unit.

33

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

• Before the processed octree is voxelised, 3D O-Conv is performed with a 1 ⇥ 1 ⇥ 1

kernel. Note that, since all spatial elements of the octree are stored in an array, 3D
O-CNN for kernel size of 1⇥ 1⇥ 1 is implemented using 1D Convolution of kernel
size 1.

• Then the full-voxel feature units are flattened before being processed by a fully
connected layer.

• Finally, this feature vector is concatenated with the processed input proprioceptive
observations to form the Final Feature Vector.

Here in the Vanilla O-CNN model, increasing the depth of the network for obtaining
a better hierarchy of feature representations may lead to Vanishing Gradient problem. So
we need to look for more advanced feature extraction architectures that allow this increase
in network depth while maintaining parameter efficiency and not encountering vanishing
gradients.

3.5.2.2 Model-2 : Residual O-CNN

Model-2 Residual O-CNN architecture was designed by incorporating the idea of residual
skip connections from [14]. It provides the typical advantages such as:

• Better gradient flow during backpropagation

• Identity mapping to avoid excessive morphing of hidden representations.

The detailed architecture of Residual O-CNN is illustrated in Fig. 3.16. It should noted
that n here is a design hyperparameter†. n can be chosen by performing an experimental
tradeoff study between network depth (more layers may lead to better feature representations)
and parameter efficiency (more parameters may cause overfitting).

The step-through of different stages of the model remains the same as Model-1 Vanilla
O-CNN as described in Section 3.5.2.1. The main modification is made in the Basic Unit
of the model.

†Experiments with different n values and corresponding results are discussed in Chapter 5, Section 5.2

34

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.16: Architecture of Residual O-CNN feature extraction backbone. Note that, here n is a design
parameter. Similar to Vanilla O-CNN, this is the architecture for the observation stack at one timestep.

3.5.2.3 Model-3 : O-AHRNet

The next model designed for extraction octree features is O-AHRNet§. The high level block
diagram is shown in Fig. 3.17 and the detailed architecture of this model is pictorially
illustrated in Fig. 3.23.

The main components of Model-3 O-AHRNet are:

• Attention Module ! Channel + Spatial Attention

• High Resolution ! Repeated Multi-depth Octree Fusion Features

Now, each of these components are explained below.

Attention Module

In this section, we will focus on the various components that make up the attention module.
The attention module was introduced for adaptive feature refinement of intermediate feature

§Stands for Octree based Attention High Resolution Network

35

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.17: High Level Block Diagram of O-AHRNet architecture. The main components of the approach such
as High Resolution and use of attention are illustrated. Note that, details about the input stem processing and
the output branch processing is described in the Detailed Architecture.

maps, by telling the model "where" to focus and improve its hidden representations. Main
idea is to compel the model to concentrate on essential traits and ignore unimportant ones.
Incorporation of Attention module was done by the considering the best empirical practices
in [15] and [16], found by extensive experimentation. Note that, this attention module was
originally designed for typical 2D Convolution operations but later it was adapted for 3D
O-Conv operations. Each attention module basically contains two sub-modules namely :
Channel Attention and Spatial Attention as shown in Fig. 3.18.

⌅ Channel Attention Sub-Module –

The intuition behind channel attention sub-module is to improve the feature blocks
by cross-channel interaction. One way that can be done is by selectively weighting each
feature channel adaptively. In other words, we are refining features in a channel by using
information from all channels.

In general, there are two popular types of channel attention mechanisms used as shown
in Fig. 3.19 : SE block and ECA block. In [16], it was shown empirically that for an

36

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.18: Illustrative Representation of the Attention Module. Note that, the attention module is made up of
submodules : Channel Attention and Spatial Attention.

improvement in performance avoiding dimensionality reduction is important. The empirical
reasons why the ECA block was chosen for channel attention are :

! SE block destroys direct correspondence (due to dimensionality reduction) between
channel and weight, which might be useful for deciding the importance of a particular
channel.

! ECA block uses a 1D convolution, hence limiting the number of parameters as
compared to SE block, which uses fully connected layers.

Now, more details regarding the implementation of the channel attention sub-module
are specified. As shown in Fig. 3.20, in this work, both the O-MaxPool and O-AvgPool
features (pooling performed along the spatial dimensions, to get a 1D vector of length
equal to number of channels) are passed through a shared 1D convolutional layer.

Fig. 3.19: Different types of Channel Attention mechanisms. These are popularly used in methods, based on
different principles. GAP stands for Global Average Pooling.

37

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.20: Channel Attention Sub-Module Architecture. Notice the use of Effective Channel Attention (ECA)
block due to its advantages.

The intuition behind using both the type of features is that (In [15], it is shown through
some experiments that that both are complementary) :

! Max-pooled features convey the degree of the octree feature block’s most prominent
element.

! Average-pooled features capture global statistics in a soft manner.

Now, the kernel size (k) for the shared 1D convolutional layer is selected adaptively
(to avoid extensive hyperparameter tuning), based on the number channels (C) involved,
given by the following expression :

k = (C) =

����
log2(C)

�
+

b

�

����
odd

(3.10)

Here, b = 1, � = 2 is considered and C is the number of channels which have to
be selectivey weighted. Observing this, we can see that the intuition is higher number of
channels should undergo longer range of interaction, hence larger kernel size.

⌅ Spatial Attention Sub-Module –

The basic architecture for spatial attention sub-module is shown in Fig. 3.21. In this
module, spatial attention feature block is obtained which can be used to improve features
utilizing the spatial link between features. In other words, it is helps the model to basically
decide "where" to focus in a feature octree. As shown in Fig. 3.21, we are using both
the O-MaxPool and O-AvgPool features (performed along the channel dimension, to get
3D feature octree) are used for the same reasons as discussed in the previous section on

38

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.21: Spatial Attention Sub-Module Architecture

Channel Attention Submodule. Both these feature octrees are stacked together and 3D
octree based convolution is performed followed by passing the output through a sigmoid
non-linearity to restrict the range of values to [0, 1]. In this work, we use consider 3⇥ 3⇥ 3

kernels.

⌅ Relative Placement of Sub-Modules –

There exist many configurations for the placement of each attention sub-module to
form the complete module. Based on experiments, it was shown in [15] that a series
configuration with channel attention sub-module preceeding the spatial attention sub-module
gives the best results. So, in this work, this configuration is considered as shown in
Fig. 3.18.

High Resolution

Some of the ideas for designing 0-AHRNet have been taken from [17]. The main ideas and
intuitions behind this type of architecture are as follows (See Fig. 3.17):

! Repeated Multi-depth Fusions are performed to improve quality of hidden representations.

! Maintaining high-resolution representations is important.

! Along depth axis, feature map size remains same as shown in Fig. 3.22.

! Along scale axis, typical feature map size reduction happens as in any typical CNN.

The main features of Model-3 O-AHRNet are as follows:

39

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.22: Intuitive visualization of Multi-scale Fusions. Adapted from [17].

• The input octree to the model has 7 channels (nx, ny, nz, d, r, g, b) as described in
Section 3.1.1.

• As shown in Fig. 3.23, the whole architecture can be divided into multiple branches
and stages for the ease of understanding.

• Each branch processes octree features of a particular depth. For example, Branch-1
processes octree features of d = 4 (See Fig. 3.23).

• In this model, for 3D O-Conv a kernel of size 3⇥ 3⇥ 3 is utilized.

• To enable multi-depth fusion of features, upsampling and downsampling (in terms
of octree depth) is necessary. For the purpose of downsampling Strided 3D O-Conv
operations are utilized, whereas for upsampling Transposed 3D O-Conv operations
(3D Octree Deconvolutions) are used.

After voxelisation, the remaining step-through of different stages of the model remains

40

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

the same as Model-1 Vanilla O-CNN as described in Section 3.5.2.1.

41

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

Fig. 3.23: Detailed architecture of the O-AHRNet. In the previous page, the model configuration (different
elements of the O-AHRNet) is listed on the right. The legend that is useful for reading the figure and
understanding the operations involved is provided in this page at the end of the figure. Note that, this is
the architecture for the observation stack at one timestep. The feature extractor is duplicated for each stack
in order to process two historical observations in addition to the current one.

42

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.5.3 Actor-Critic Heads

In this section, more details regarding the DL models of Critic and Actor Heads are specified.

3.5.3.1 Vanilla Architectures

The vanilla baseline architectures for the actor and critic networks are shown in Fig. 3.24.
An identical fully connected neural network architecture with different set of parameters is
used for the actor and critic.

Fig. 3.24: Architectures of Vanilla Actor and Critic Networks. Note that, for output of the actor network for
TQC algorithm is interpreted as mean and std. of the action distribution. The output of the critic network is
interpreted as the distributional representation of the action-values (with finite support) predicted by multiple
critics.

It should be noted that the input to both actor and crtic networks is the resultant feature
vector obtained after concatenating the Final Feature Vectors from the three copies of
Feature Extractors {FE#1, FE#2, FE#3} processing observations from timesteps respectively
{t, t� 1, t� 2} (Refer Fig. 3.14).

43

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

3.5.3.2 Innovations in Architectures of Heads (Digression)

Most of the DRL research has been focussed into algorithmic innovations, where DL is
generally treated as a blackbox function approximator. Some ideas that were introduced to
break this trend are Spectral Normalization (inspired from GANs) and Duelling Networks.
In this section, the focus is on innovating the architectures of actor and critic networks (also
called heads).

⌅ Spectral Normalization –

In an entropy regularized setting (such as the one used in TQC), critic is trained by
minimizing the soft bellman residual :

min

E
⇣
Q (st, a)�

h
rt + �E

h
Q̂ (st+1, at+1) + ↵H(⇡)

ii⌘2
(3.11)

For getting a gradient step for actor, derivatives are passed through the critic r✓ =
@Q (a✓,s)

@✓
. Some experiments conducted in [18] revealed that on use of modern head architectures,

the suspected problem of overfitting was not the cause of poor performance but exploding
gradients can be a possible issue. It was hypothesized that taking gradients through the
critic can cause unstable behaviour, similar taking the gradient through the discriminator
network in GANs.

Fig. 3.25: Architectures of Actor and Critic Networks after incorporating some ideas such as dense
connections [19], spectral norm. [18] and duelling critic [20]. It has been used for some initial experiments
that will be shown in the Chapter 5.

We know that a function is called L-Lipschitz smooth when its gradient is limited by L.
So, the idea of spectral normalization [18] is that if we can make sure that critic function is

44

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

L-Lipschitz smooth, then gradients @Q

@aq
being propagated into the actor are bounded.

In GAN literature, spectral norm applied in the following way, ensures that all layers
have operator norm of 1 :

y =
Wx

�max(W)
⇡

Wx

pTWq
(3.12)

For this to work, p and q need to be the Eigen vectors that correspond to the biggest
eigen value (since we are trying to estimate �max), which is made sure by using Power
Iteration method.

⌅ Duelling Networks –

Dueling network (originally introduced for discrete action spaces) represents two separate
estimators for the critic: a state-dependent action advantage function estimator and a state-independent
value function estimator[21]. Intuition behind Duelling Networks is that may learn which
states are useful without having to understand the effects of each action on each state.

Module that combines two streams of duelling network is given by (carefully designed) :

Q(a, s;↵, ✓, �) = V (s; ✓, �) +

A(a, s;↵, ✓)�

1

|A|

X

a0

A(a0, s;↵, ✓)

!
(3.13)

This idea has been adapted to continuous action spaces in [20] by discretizing the action
space can be discretised into intervals and decoupling Q value as action interval advantages
and action independent state values.

3.6 Chapter Summary

In this chapter, details about developing effective DRL algorithms for Task I - Grasping
Various Objects in Diverse Objects which involved training a robotic arm agent to grasp
unseen objects in novel environments, were provided. A complete end-to-end DRL pipeline
was demonstrated, where a robotic arm was deployed in various random simulation scenes
to learn a robust policy for grasping novel objects. The design and development of a series
of octree-based convolutional neural network models for effective feature extraction in an
Actor-Critic setting were discussed. The model development was focused on demonstrating

45

Chapter 3. Task I - Grasping Various Objects in Diverse Environments

the need for developing and incorporating complex DL models in DRL algorithms. The
developed models were incorporated into the DRL pipeline. Results for various experiments
conducted as a part of this first task will be analyzed in Chapter 5. In this task, only static
but novel objects of interest were considered. Chapter 4 explores the other side of the coin,
where dynamic but known objects of interest are considered whose motion trajectories are
unknown apriori.

46

Chapter 4

Task II - Dynamic Grasping of Moving
Objects

This chapter explains various components involved in realizing the second task dealing
with grasping and picking up known but dynamic (moving) objects whose motion path is
not known apriori. Deep Learning (DL) and Inverse Kinematics (IK) techniques are mainly
used in this work. Details regarding the task description, design of the entire approach,
implementation details and architectures of the various DL models utilized are illustrated
in this chapter. Ideas and setup for this task design were taken from [3]. The results of
various experiments conducted as a part of this task will be presented in a forthcoming
chapter.

Fig. 4.1: Illustration of basic problem setup of Task-2. Note the 3D model of the target object is known
apriori but not its motion trajectory. Here, the moving target object is the “cube”.

47

Chapter 4. Task II - Dynamic Grasping of Moving Objects

4.1 Task Description

The second task considered is Dynamic Grasping of Moving Objects. The definition of the
problem can be characterized using the following pointers:

? The target object which is moving w.r.t robot’s world frame is known, i.e. existence
and apriori access to its 3D model is assumed.

? The motion trajectory which is being followed by the target object is unknown.

? The aim of the robotic arm is to first reach, then grasp and finally lift the dynamic
target in a stable manner.

? Grasping the dynamic target is considered to be a success if the robotic arm picks up
the object of interest quickly but does not overturn any obstacles present as a result
of a collision in the process.

4.2 A Note on Inverse Kinematics (IK)

Fig. 4.2: Illustration of Forward and Inverse Kinematics in a articulated robotic arm with multiple joint links.
Note that, here Li’s denote the robot’s links and qj’s denote the joint angles.

We know that Forward Kinematics (FK) deals with determining the pose of the end
effector, given the joint angles of different joints present in the robotic arm. Inverse

48

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Kinematics (IK) tells us the joint angle configuration required so that the end effector can
reach a particular pose of interest to us for manipulation (See Fig. 4.2).

There are two broad classes of IK methods of relevance, used popularly for motion
planning :

1. Sampling based Methods –

• This class of methods make use of random sampling in a high dimensional joint
configuration space and constructing tree structures, to plan trajectories.

• Examples are Rapidly-exploring Random Trees (RRT) [22] and Probabilistic
RoadMaps (PRM) [23].

2. Optimization based Methods –

• This type of algorithms start with an initial trajectory and then perform mathematical
optimization in trajectory space.

• Examples are Covariant Hamiltonian Optimization for Motion Planning (CHOMP)
[24] and Stochastic Trajectory Optimization for Motion Planning (STOMP)
[25].

4.3 Integral Components of the Approach : An Overview

In this section, a brief overview of various components [3] that are involved in the design
of the approach is provided.

4.3.1 Object Pose Retrieval

Since we are considering a simulated setup and the main focus of the problem is not
estimation of object pose, we retrieve or get the object pose using the simulation software
w.r.t. world coordinate system. Note that, in a real-world setup, this pose retrieval part can
be replaced with DL-based pose estimation models that RGB or RGB-D data of the scene’s
state as input and estimate the 6D pose consisting of the position and orientation of the
target object. In that case, a perception sensor such as an RGB-D camera can be a part of
the robotic setup. One popular method that can be used for estimating pose is DOPE [2].

49

Chapter 4. Task II - Dynamic Grasping of Moving Objects

4.3.2 Object Pose Prediction

Fig. 4.3: Illustration demonstrating the need for pose prediction. A Kinova Mico robotic arm and a known
moving target (Bleach Cleanser) are shown in Pybullet Simulation environment.

The problem statement suggests that target object of interest would probably be dynamic
and therefore planning motion trajectories for the end effector at the retrieved pose of the
target would be wasteful. This is because when the grasp would be executed the object
would not be in the same pose due to its motion. This ultimately leads to failure of
the grasp. Hence, object pose prediction becomes necessary in such environments (See
Fig. 4.3). Different techniques explored to ensure effective estimation of target object’s
future pose are described in Section 4.7.

4.3.3 Grasp Database

Since the 3D model of the target object is known apriori, a grasp database can be created by
pre-computing the various stable grasps in simulation. The grasps are basically obtained
by putting the target at different random poses in the workspace. The procedure employed
[3] for getting final condensed grasp database for each object is as follows :

• First, without considering the stability of grasp, 5000 candidates of grasp are considered.

• Then, a small random noise is added to pose of the object at which the grasp happened.

• In the new displaced pose, the same grasp is carried out. The outcome of this grasp
is stored as either a success or failure.

50

Chapter 4. Task II - Dynamic Grasping of Moving Objects

• This experiment is repeated multiple times for each grasp. The rate of success of this
experimentation is an indicator of the reliability of the grasp.

• From the 5000 candidates, the top 100 grasps (for each object) are selected and stored
as the database, GDB, to be used in the dynamic grasping pipeline.

Fig. 4.4: Pictorial Illustration of robust grasps from Grasp Database (GDB). The simulation scene consists
of a Fetch robotic arm and a cylinder object. The red arrows indicate some of the stable grasps directions for
picking up the object. Adapted from [26].

Note that, here a trade off exists between the number of grasps in the database (accounting
for diversity of object approach) and the time to iterate through all grasps.

4.3.4 Grasp Ranking Functions

In this subsection, details about various ranking functions, utilized to filter the grasps online
from the offline computed grasp database (See Section 4.3.3) and get a final grasp trajectory
to be executed live* in the dynamic grasping pipeline, are discussed.

*When a test trial is running

51

Chapter 4. Task II - Dynamic Grasping of Moving Objects

4.3.4.1 Reachability Awareness

Intuition

One of the most important indicators of a
correct and feasible grasp is reachability.
It is important for the robotic arm to be
reachability aware because:

• A reachability unaware motion
planner will return some
unrealistic and impossible grasp
candidates. This will lead to waste
of computation because of motion
trajectory replanning.

• For dynamic objects, reachability
can serve as an indicator of
manipulability i.e., it is highly
likely that most reachable grasp
will remain attainable in the future
as well.

Fig. 4.5: Image depicting the need for a notion of
reachability. It should be noted that, all robust grasps
need not reachable as shown.

One naive solution for incorporating reachability awareness is that if we have a grasp
database (such as GDB in Section 4.3.3) for a known target, then we can compute IK
for all of them and check if they are reachable. But this process is time-consuming and
compute-intensive; hence, not suitable for dynamic settings.

The following are some of the favourable traits of a reachability awareness system:

! Predetermined (offline) space of reachability, unique for every robotic arm.

! This space can be used to rate the grasp without computing IK.

! Specifically, for a dynamic setting, it is beneficial to have a "smooth" Signed Distance
Field (SDF) than binary reachability values in the field. This is because the value
should indicate not only reachability now but after some time steps when the object
has moved around.

52

Chapter 4. Task II - Dynamic Grasping of Moving Objects

! A gradient to indicate the direction from inaccessible areas to accessible areas of the
workplace, can be informative.

Reachability Space Representation

A grasp is reachable when a motion path can be devised to take the arm from its present
configuration to a target configuration that puts the arm at the intended grasp location.
Therefore, by this original definition, reachability space is binary in nature (For example, {
Reachable (1), Not Reachable (0) }).

In order to obtain the features of an ideal system described earlier, a Signed Distance
Field (SDF) dsdf = SDF (pose) can be defined [26]. By taking into account the grid
resolution and distance from interface:

dsdf = ±

s����
�xyz

reslin

����
2

+ r

����
�rpy

resrot

����
2

(4.1)

where:

�xyz(in cm) ! translational distance

reslin(in cm) ! translational resolution

�rpy(in rad) ! rotational distance

resrot(in rad) ! rotational resolution

r ! relative metric ratio =) reslin cm ⌘ r ⇤ resrotrad

Fig. 4.6: Conversion of Binary Reachability Notion to smooth SDF representation. Note that, in the left
figure green arrows indicate reachable and red arrows indicate unreachable grasps. Adapted from [26].

This SDF can be interpreted as reachable grasps lead to positive dsdf value and unreachable
grasps will have a negative dsdf value.

53

Chapter 4. Task II - Dynamic Grasping of Moving Objects

4.3.4.2 Motion Awareness

Another important ranking function is that of Motion Awareness. This function basically
maps each grasp to a value denoting the feasibility of the grasp based on the way in which
the object of interest is moving.

Fig. 4.7: Motivation for considering type of motion as a discriminating function for planning grasps. From
the figure, it is clear that motion aware grasps have a higher probability of succeeding compared to its
counterpart, even though both of them maybe stable.

A DL based Neural Network model was used for getting motion quality score of grasps.
The complete architecture of the model is provided in Fig. 4.8. A dataset for supervised
training of this network was generated [3] and then the training was carried out. Note that,
this NN function is used to filter grasps based on the attribute of motion. More details about
this would be given in Section 4.4.

4.3.4.3 Integration of Ranking Functions

Now, note that both the ranking functions are used for the filter of grasps in the Grasp
Database. There are many ways to combine both of them for use. After experimentation,

54

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Fig. 4.8: Architecture of the Motion Aware Network used [3]. Note that, the output is a probability indicating
how successful a given grasp can be depending on the object motion aware quality.

[3] found that including five of the top grasps based on both qualities works the best,
grasping success result-wise.

4.3.5 Adaptive Trajectory Synthesis

In Section 4.2, different class of IK methods were discussed. It should be noted both these
methods are not directly suitable for handling dynamic environments, where the target
object is moving in an unknown trajectory. This is because of the following reasons:

(i) Optimization based algorithms such as Covariant Hamiltonian Optimization for Motion
Planning (CHOMP) [24] and Stochastic Trajectory Optimization for Motion Planning
(STOMP) [25] can be expensive in time and since dynamic settings require fast
motion replanning, these methods do not really scale here.

(ii) Sampling based methods such as Rapidly-exploring Random Trees (RRT) [22] and
Probabilistic RoadMaps (PRM) [23] in the vanilla form are faster but they can generate

55

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Fig. 4.9: A toy example for demonstrating the problem with vanilla RRT and dynamic targets. Here, the
goal of the green dot is to catch the moving red one (both circled in the top left sub-image). RRT is used as
the planning algorithm to generate motion plans. We can see that the motion trajectory being followed by the
green dot is not at all smooth and very random.

random trajectories that may be significantly different from the previous solution,
owing to the motion of the target. Such random motion plans at every time instant,
ultimately leads to the robotic arm having wavy motion, which can be dangerous and
prone to collisions. This is demonstrated using a toy example in Fig. 4.9.

In order to enable fast motion replanning and avoid jerky motions of the robotic arm, we
can use a trajectory seeding approach [3], where the motion planning algorithm (sampling

56

Chapter 4. Task II - Dynamic Grasping of Moving Objects

based method such as RRT) incorporates the solution from the previous timestep as a initial
point for generating current trajectory. Using this technique has the following advantages:

• Smoother transition between plans.

• Temporal consistency in generated trajectories at different timesteps.

• Speed up in computation.

4.4 Algorithmic View of the Approach

Some details about a few functions involved in the algorithm [3] are provided:

• RetrieveGraspDatabase(.) loads the object specific database of robust grasps precomputed
(Refer to Section 4.3.3).

• RetrieveObjectPose(.) is used to get the pose of the dynamic target at the current
instant (Refer to Section 4.3.1).

• PredictObjectPose(.) is used to forecast the pose of the dynamic target at a future
instant (Refer to Section 4.3.2).

• ConvertGrasps(.) basically does a co-ordinate frame transformation from the frame
of target to the robotic arm’s frame.

• FilterGrasps(.) reduces the size of GDB by performing the filtering operation and
selecting grasps according to the motion aware and reachability aware ranking functions
(Refer to Section 4.3.4).

• ChooseGrasp(.) finds the grasp that is nearest to the present configuration of the arm
from GF .

• GetEuclideanDistance(.) calculates the differential euclidean distance between the
present gripper location and the chosen grasp pose.

• GetQuaternionDistance(.) calculates the differential quaternion distance between the
present gripper location and the chosen grasp pose.

• CheckGraspSuccess(.) confirms whether the executed dynamic grasp was a success
or failure.

57

Chapter 4. Task II - Dynamic Grasping of Moving Objects

58

Chapter 4. Task II - Dynamic Grasping of Moving Objects

4.5 Pictorial Demonstration

Fig. 4.10: Pictorial Demonstration of Task-2. The keyframes corresponding to A , B and C in each set of
images are various steps of the task are shown in a chronological manner, in Pybullet simulation environment
with a UR5 arm. Notice that the robotic arm first reaches a dynamic object, makes contact with it in a
pregrasp, then grasps the object before lifting it into the air. This marks the end of a successful trial. Note
that the object of interest is circled in the first frame of every motion sequence.

59

Chapter 4. Task II - Dynamic Grasping of Moving Objects

4.6 Implementation Details

In this section, some aspects related to the implementation of the dynamic grasping setup is
discussed. Note that more details regarding the Configuration will be provided in Chapter 5,
Section 5.2.1.

Simulation Environment

For all experiments and trials, the Pybullet† simulation environment was utilized. It focuses
on sim-to-real transfer and is a simple and straightforward Python tool for deep learning
and simulating robots. Some of its prominent features are:

• Allows loading from URDF, SDF, MJCF, and more file formats.

• It offers simulations of forward dynamics, computation of inverse dynamics, forward
and inverse kinematics, collision detection, and ray intersection queries.

• In addition to physics simulation, bindings exist for rendering, including a CPU
renderer (TinyRenderer) and OpenGL 3.x rendering.

• PyBullet is effortlessly compatible with TensorFlow and OpenAI Gym.

Middleware Software

ROS Melodic is used as middleware for this work which handles communication between
primary nodes and processes requests from motion planner and the simulation environment
itself.

Robotic Arm

In this work, UR5 arm with Robotique gripper is utilized.

†https://pybullet.org

60

https://pybullet.org

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Objects

For training and testing the robotic arm’s performance inside the simulation environment,
the following objects are taken from the YCB model set, provided as a part of the YCB
benchmark dataset [27][28]. Note that, the 3D models of these objects are available apriori.

Fig. 4.11: Stills of various YCB objects used in Task-2 on dynamic grasping.

Grasp Collection

For collecting various robust grasps to store in the Grasp Database, the GraspIt!‡ software
is utilized. It is a simulator for grasping research that may accept various hand and robot
designs. Some of its main features are as follows:

• 3D user interface that allows the user to observe and interact with a virtual environment
filled with robots, objects, and obstacles.

• Provides support for grasp planning, numerical grasp quality metrics calculation and
visualisation approaches for the Grasp Wrench Space.

• It consists of a dynamics engine and allows interaction with hardware and sensors.

Motion Planning

For trajectory generation, solving kinematics and motion planning MoveIt§ framework is
utilized. Details about this were provided in Chapter 3 Section 3.4.

‡https://graspit-simulator.github.io
§https://moveit.ros.org

61

https://graspit-simulator.github.io
https://moveit.ros.org

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Types of Object Motion

Here, we discuss various types of object motion that are used various experiments of this
task. More details about the performance will be provided in Chapter 5 Section 5.2. The
following types of motion were considered in simulation environment [3] using conveyor
belts:

1. Linear Motion – The dynamic target advances at the same velocity along a straight
line.

2. Linear Motion with Obstacles – Similar to linear motion, but with added complexity
due to the presence of background clutter objects.

3. Linear Motion with Top Slab – Here, the level of challenge is increased in linear
motion by keeping a flat top slab directly above the conveyor belt.

4. Circular Motion – The dynamic target executed uniform circular motion along a
non-linear circularly shaped conveyor belt.

5. Sinusoidal Motion – This is a more difficult version of nonlinear motion in which the
target goes along a sinusoidal path (superimposed on linear motion).

Fig. 4.12: Illustration of different types of motion types. Note that, parameters that can be randomized are
displayed in the legend.

It should be noted that since we are considering a setup where the motion of the object
is not known apriori, there are a necessity to randomize various parameters of the motion

62

Chapter 4. Task II - Dynamic Grasping of Moving Objects

trajectory. This is because exposing the model to different kinds of trajectories during
training and help in its generalization aspect. The various aspects that are considered for
randomization are shown in Fig. 4.12.

4.7 Object Pose Prediction : Approach Design

In this section, we discuss about various techniques utilized for forecasting the future pose
of the object of interest.

4.7.1 Need for Pose Prediction

Consider the following arguments:

• Motion planning consumes time and computational resources.

• As an item moves in a dynamic grasping situation, the calculated motion plan might
soon become outdated.

Hence, since the type of motion of the target is unknown in the task that is being
considered, it is needed to be able to forecast the location of the target in future.

4.7.2 Method-1 : Kalman Filter

4.7.2.1 Main Idea

The usage of Kalman Filters is a common and conventional technique. The Kalman Filter
forecasts the upcoming state of the system based on prior assessments. It is often used in
target tracking (radar), location and navigation systems, control systems etc.

63

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Fig. 4.13: Toy Example describing how Kalman Filter can be useful for prediction of motion.

4.7.2.2 Operation

The main steps of involved in the main operation of a Kalman Filter are as follows [29] :

1. Time Update (Predict) Step : Dynamical Model and equations of motion from physics
are used to make the forecast. Note that, the uncertainities are taken into account as
Process Noise.

64

Chapter 4. Task II - Dynamic Grasping of Moving Objects

2. Measurement (Update) Step : This step basically indicates the updation in the prediction
made after taking into account the sensor measurements. Note that, here Sensor
Noise is considered.

Fig. 4.14: An illustration of whole filter operation with important equations under each of the two steps [29].

4.7.2.3 State Extrapolation

The general form of the state extrapolation equation is :

x̂n+1,n = F x̂n,n +Gun + wn (4.2)

In this current case of object pose prediction, we consider:

• No control inputs un = 0

• Constant Acceleration Dynamical Model

Therefore, the equation becomes:

x̂n+1,n = F x̂n,n + wn (4.3)

The constant acceleration dynamical model can be represented as (9D State vectors) :

65

Chapter 4. Task II - Dynamic Grasping of Moving Objects

x̂n+1,n = F x̂n,n + wn

2

66666666666666664

x̂n+1,n

ŷn+1,n

ẑn+1,n

ˆ̇xn+1,n

ˆ̇yn+1,n

ˆ̇zn+1,n

ˆ̈xn+1,n

ˆ̈yn+1,n

ˆ̈zn+1,n

3

77777777777777775

=

2

66666666666666664

1 0 0 �t 0 0 0.5�t2 0 0

0 1 0 0 �t 0 0 0.5�t2 0

0 0 1 0 0 �t 0 0 0.5�t2

0 0 0 1 0 0 �t 0 0

0 0 0 0 1 0 0 �t 0

0 0 0 0 0 1 0 0 �t

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

3

77777777777777775

2

66666666666666664

x̂n,n

ŷn,n

ẑn,n
ˆ̇xn,n

ˆ̇yn,n
ˆ̇zn,n
ˆ̈xn,n

ˆ̈yn,n
ˆ̈zn,n

3

77777777777777775

After matrix multiplication, we get the familiar equations of motion as:

x̂n+1,n = x̂n,n + ˆ̇xn,n�t+
1

2
ˆ̈xn,n�t2

ŷn+1,n = ŷn,n + ˆ̇yn,n�t+
1

2
ˆ̈yn,n�t2

ẑn+1,n = ẑn,n + ˆ̇zn,n�t+
1

2
ˆ̈zn,n�t2

ˆ̇xn+1,n = ˆ̇xn,n + ˆ̈xn,n�t

ˆ̇yn+1,n = ˆ̇yn,n + ˆ̈yn,n�t

ˆ̇zn+1,n = ˆ̇zn,n + ˆ̈zn,n�t

ˆ̈xn+1,n = ˆ̈xn,n

ˆ̈yn+1,n = ˆ̈yn,n

ˆ̈zn+1,n = ˆ̈zn,n

4.7.2.4 Measurement Model

The measurement model can be represented as follows:

zn = Hxn + vn (4.4)

where
zn 2 R3⇥1 xn 2 R9⇥1 H 2 R3⇥9

Note that, H is the observation matrix, which is typically used for useful state selection.

66

Chapter 4. Task II - Dynamic Grasping of Moving Objects

In this work, the following H matrix is considered (for position selection) :

H =

2

64
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

3

75 (4.5)

Fig. 4.15: An illustration of a simple 1D example describing the intuition of kalman gain in the state update
equation. Adapted from [29].

4.7.2.5 Kalman Gain

The expression for Kalman Gain can be given by:

67

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Kn = Pn,n�1H
T
�
HPn,n�1H

T +Rn

��1 (4.6)

Intuition is that when creating a new estimate, Kalman Gain considers both the measurement
and the prior estimate. For intuition, it can be thought of as follows:

Kn =
Pn,n�1HT

(HPn,n�1HT +Rn)
(4.7)

Note that, for good sensors, Rn is small and therefore Kalman Gain is high. The
intuition behind Kalman Gain is pictorially illustrated in Fig. 4.15.

4.7.2.6 State Update Equation

The equation is given as :

x̂n,n = x̂n,n�1 +Kn (zn �Hx̂n,n�1) (4.8)

From this equation, we can see that if Kalman Gain is high, we are giving more
importance to measurements. This can also be understood by observing Fig. 4.15.

4.7.3 Method-2 : Multi Layer Perceptron (MLP)

Following recent advances in DL due to greater computational capabilities and democratisation,
the creation of efficient neural network topologies has resulted in performance breakthroughs
for a range of issues, such as sequence-to-sequence cognitive tasks. In Methods-2 based
on Multi Layer Perceptron (MLP), the Kalman Filter (See Section 4.7.2) for object pose
prediction is replaced with a simple Fully Connected Neural Network with non-linear
ReLU activations. The complete architecture along with sequence based input and outputs
is illustrated in Fig. 4.16.

Note

It should be noted in this work, one of the assumptions made is that the target object
orientation remains the same as the previous time step (i.e. the timestep when we are
predicting the future pose). Therefore in all object pose prediction methods of this section,
we only estimate the future pose, whereas, orientation is duplicated from the previous
timestep.

68

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Fig. 4.16: Architecuture of MLP Model for Object Pose Prediction. Note that, here position predictions are
made at two future timesteps. Also, dropout is used as a regularization mechanism here.

4.7.4 Method-3 : Long Short Term Memory Network (LSTM)

The next method that is considered an improvement to the previous method is the utilization
of Long Short Term Memory (LSTM) Networks. The following characteristics of the LSTM
networks have motivated its usage for this specific subtask of object pose prediction:

(i) Efficiently process and prioritize historical information valuable for future prediction
and handle highly complex temporal data with grace.

69

Chapter 4. Task II - Dynamic Grasping of Moving Objects

Fig. 4.17: Architecuture of LSTM Model for Object Pose Prediction. Note that, here position predictions are
made at two future timesteps. Also, dropout is used as a regularization mechanism here.

(ii) LSTMs have been demonstrated to be superior than dense DNNs and early Recurrent
Neural Networks (RNNs) in retaining long-term dependencies due to the addition of a

70

Chapter 4. Task II - Dynamic Grasping of Moving Objects

context-dependent weighted self-loop that enables them to forget previous knowledge
in addition to acquiring it.

(iii) To express the connection between past and present data values, LSTMs use learned
weights to reflect that link.

(iv) They can also manage multivariate time data without the requirement for dimensionality
reduction or application-specific domain expertise, allowing for generalizability across
a variety of domains.

(v) Furthermore, LSTM techniques have been proven to represent complicated nonlinear
feature interactions and eliminate the requirement to define a time-window for considering
data values owing to the usage of shared parameters over time.

Please note that in this work, predictions of the pose of the dynamic target are made at
two future timesteps t = t0+1 and t = t0+2, respectively. The prediction to be used further
for motion planning is chosen based on the conditions mentioned in the CalcPredTime(.)
function of the dynamic grasping algorithm (Refer Section 4.4).

4.8 Chapter Summary

In this chapter, a detailed description of the approach used for Task II - Dynamic Grasping
of Moving Objects, where the aim is to make the robotic arm grasp known objects moving
in an unknown trajectory, is provided. A demonstration of a Dynamic Grasping pipeline is
given, where a robotic arm was deployed in a simulation scene to grasp dynamic objects
whose 3D model is known apriori, but the motion trajectory is unknown. Various object
pose prediction algorithms were incorporated into the dynamic grasping system. The next
chapter provides results for various experiments conducted as a part of both the tasks.

71

Chapter 5

Results and Inferences

In this chapter, the results are provided for the test performance of the various models and
methods described in Chapter 3 on Task-1 and Chapter 4 on Task-2. The experimental
configurations used and any other details will be provided wherever necessary. The results
from various trials and experiments will be used to compare and analyze various aspects of
the model performance.

5.1 Task-1 : Grasping Various Objects in Diverse Environments

This section provides details about the test setup, configuration, results, and analysis of
different experiments conducted as part of Task-1.

5.1.1 General Configuration and Hyperparameter Details

As mentioned in Chapter 3, DRL algorithm used in various experiments is the TQC (Truncated
Quantile Critics) [13] algorithm. The following table provides information regarding the
hyperparameters used and configuration, specific to this DRL algorithm.

72

Chapter 5. Results and Inferences

Configuration Parameter Value
Critics 2

Experience Replay
Buffer Size 40000

Mini-batch Size 32
Activation Function ReLU
Training Iterations 500 K
Discount Factor � 0.999

Learning Rate Scheduler Linear
(1.5⇥ 10�4

! 0)
Optimizer Adam

Target Update Rate ⌧ 5⇥ 10�5

Exploratory Action Noise N (0, 0.025)
Initial Entropy Coefficient 0.1

Atoms 25
Truncated Atoms 3

Table 5.1: List of various general configuration parameters that are used in the experiments of Task-1.

Note that, more configuration details specific to an experiments or group of experiments
will be provided with the results.

5.1.2 Test Setup and Evaluation Metrics

In Task-1, we are considering the task of making the robotic arm learn how to grasp novel
objects in novel random scenes. Therefore, for testing we use objects and scenes (floor
textures etc.) that the model has not been exposed to, during training. The test setup
consists of evaluating the robot’s performance and the learnt policy in 200 episodes with
novel scenes and novel objects.

The different evaluation metrics that are considered for understanding the performance
of different models is as follows:

1. Success Rate – The percentage of episodes where the robotic arm was able to successfully
reach, touch, grasp and lift any object 12.5 cm above the ground.

2. Mean Reward – The average reward obtained by the DRL agent calculated on a total
of 200 test episodes.

3. Mean Episode Length – The average length of episode, calculated on a total of 200
test episodes.

73

Chapter 5. Results and Inferences

4. Mean Successful Episode Length – The average length of episode, calculated over
only the successful episodes.

5.1.3 Results and Analysis

The results of various experiments that are conducted as a part of this task are shown in a
comparative fashion. This for the ease of understanding and making inferences.

Note

• In the comparison-specific configuration, the actor and critic network architectures
used are Vanilla (See Chapter 3 Section 3.5.3.2), unless it is explicitly mentioned.

• The training plots described in all of the comparison have smoothed to eliminate
noise (caused due to mini-batch nature of training) and interpret the underlying
trend. Therefore, the smoothed out curve will appear opaque and the actual curve
will appear slightly transparent.

5.1.3.1 Comparison-1

⌅ Configuration –

• Robotic Arm : Panda

• Feature Extractor : Vanilla O-CNN (Refer Chapter 3 Section 3.5.2.1)

• Aim : To analyze the change in performance when coloured octree
features are used.

74

Chapter 5. Results and Inferences

⌅ Test Results –

Type With Colour Features Without Colour Features
Success Rate 45.5% 40.5%
Mean Reward 188.42± 191.20 174.01± 186.73

Mean Episode Length 65.71± 39.38 74.59± 34.54
Mean Successful Episode Length 24.78± 19.725 37.26± 24.56

Table 5.2: Test results obtained on evaluating the learnt policy on novel objects and novel scenes over 200
episodes

⌅ Training Plots –

Fig. 5.1: Training Plots obtained after training the agent and the model with the specified configuration. Note
that, initially the success rate of Octree Without Colour Features is better but later the performance of Octree
Without Colour Features improves and is relatively more stable.

⌅ Inferences –

! Inclusion of colored features† leads to the following:
†Octree With Colour Env consists of scene randomization and RGB features (input signal) where Octree

With Colour Env does not contain them.

75

Chapter 5. Results and Inferences

� Robust policy is learnt by the agent due to more domain randomization.

� Training success rate remains more stable as shown in the training plot.

� Overall performance is slightly better.

! Initially, coloured features can be confusing and difficult to learn but leads to better
policies being learnt by the agent.

5.1.3.2 Comparison-2

⌅ Configuration –

• Robotic Arm : Panda

• Aim : To analyze the change in performance when feature extractor is
modified.

⌅ Test Results –

Arch. Vanilla O-CNN Residual O-CNN (n = 2)

Parameters 0.6795M 0.5675M
Success Rate 45.5% 45.5%
Mean Reward 188.42± 191.20 185.955± 194.76

Mean Episode Length 65.71± 39.38 63.965± 40.615
Mean Successful 24.78± 19.725 20.835± 14.54
Episode Length

Table 5.3: Test results obtained on evaluating the learnt policy on novel objects and novel scenes over 200
episodes

⌅ Inferences –

! Residual O-CNN as compared to Vanilla O-CNN :

� Learns faster due to better gradient flow.

76

Chapter 5. Results and Inferences

� Finally obtains similar performance with 0.1 M parameters less.

� Better features are extracted, which is indicated by the Successful Episode
length being much less.

! Residual O-CNN performs more reliably with less variable success rates on different
tests on novel scenes and new objects.

⌅ Training Plots –

Fig. 5.2: Training Plots obtained after training the agent and the model with the specified configuration. We
can see how the Residual O-CNN learns faster and extracts better features while having less parameters.

77

Chapter 5. Results and Inferences

5.1.3.3 Comparison-3

⌅ Configuration –

• Robotic Arm : UR5 arm with RG2 gripper

• Feature Extractor : Residual O-CNN (n=4) (Refer Chapter 3 Section 3.5.2.2

• Aim : To analyze the change in performance when Batch Normalization
is used in the Feature Extractor.

⌅ Basic Unit Arch. (when BatchNorm is used) –

Fig. 5.3: Architecture of Basic Unit when BatchNorm is used

⌅ Inferences –

! Use of BatchNorm in the Residual O-CNN severely reduces the performance :

� This is commonly encountered in Deep RL.

� One of the possible reasons can be that the value function is not stationary and
is estimated by critic.

� There is a need to design an RL aware normalization method.

78

Chapter 5. Results and Inferences

⌅ Training Plots –

Fig. 5.4: Training Plots obtained after training the agent and the model with the specified configuration. The
performance of Residual O-CNN is worse when BatchNorm is introduced into its architecture.

5.1.3.4 Comparison-4

⌅ Configuration –

• Robotic Arm : UR5 arm with RG2 gripper

• Feature Extractor : Residual O-CNN (n=4) (Refer Chapter 3 Section 3.5.2.2

• Aim : To analyze the change in performance when feature extractor and
robotic arm is modified.

79

Chapter 5. Results and Inferences

⌅ Test Results –

Arch. Residual O-CNN (n = 4)

Parameters 0.6348M
Success Rate 80.5%
Mean Reward 319.37± 152.32

Mean Episode Length 39.42± 34.70
Mean Successful 25.71± 21.95
Episode Length

Table 5.4: Test results obtained on evaluating the learnt policy on novel objects and novel scenes over 200
episodes

⌅ Inferences –

! The Residual O-CNN (n=4) + UR5 seems to perform better than others :

� Manipulation is easier to learn with UR5 arm :

* Panda arm’s gripper needs to be very precisely located for executing a
successful grasp.

* UR5 arm + RG2 gripper design allows it pick up objects in much simpler
way.

� Residual O-CNN architecture has the following advantages :

* Skip connections help in better flow of gradients during backpropagation
(vanishing gradient problem solved upto some extent).

* Identity mapping reduces excessive morphing of hidden representations.

80

Chapter 5. Results and Inferences

⌅ Training Plots –

Fig. 5.5: Training Plots obtained after training the agent and the model with the specified configuration. We
can clearly see how the Residual O-CNN (n=4) + UR5 Arm performance much better.

5.1.3.5 Comparison-5

⌅ Configuration –

• Robotic Arm : Panda Arm

• Feature Extractor : Residual O-CNN (n=4) (Refer Chapter 3 Section 3.5.2.2)

• Actor Arch. : Dense Residual (Refer Chapter 3 Section 3.5.3.2)

• Critic Arch. : Dense Residual + Duelling Arch. (Refer Chapter 3 Section 3.5.3.2)

• Description : Some initial experiments to understand the efficacy of Spectral
Normalization (SN) and Duelling Networks.

81

Chapter 5. Results and Inferences

⌅ Training Plots –

Fig. 5.6: Training curves describing the mean length of episode, mean reward of episode and success rate
plotted against timesteps. Here, {FE = Feature Extractor, AC = Actor and Critic Networks}

⌅ Inferences –

! The success rate (performance) of the experiments in the limited training time considered
is not that high.

! The critic loss seems to increase at much faster rates to exponentially higher values
as the number of Spectral Norm (SN) layers increase in the whole architecture.

! This needs to be investigated further by visualizing the gradients and digging deeper
into the problem.

82

Chapter 5. Results and Inferences

5.1.3.6 Comparison-6

⌅ Configuration –

• Feature Extractor : Residual O-CNN (n=4) (Refer Chapter 3 Section 3.5.2.2)

• Actor Arch. : Dense Residual (Refer Chapter 3 Section 3.5.3.2)

• Critic Arch. : Dense Residual + Duelling Arch. (Refer Chapter 3 Section 3.5.3.2)

• Description : Some initial experiments to understand the efficacy of Spectral
Normalization (SN) and Duelling Networks.

⌅ Inferences –

! The success rate (performance) of the experiments in the limited training time considered
is not that high.

! The critic loss seems to increase at much faster rates to exponentially higher values
as the number of SN layers increase in the whole arch.

! The success rate of the experiment with UR5 arm is higher because manipulation is
easier in this case, but it is not very high.

! This needs to be investigated further by visualizing the gradients and digging deeper
into the problem.

83

Chapter 5. Results and Inferences

⌅ Training Plots –

Fig. 5.7: Training curves describing the mean length of episode, mean reward of episode and success rate
plotted against timesteps. Here, {FE = Feature Extractor, AC = Actor and Critic Networks, SN = Spectral
Normalization}. Note that, the performance with UR5 arm is better in relative way but not that great when
compared absolutely.

5.1.3.7 Comparison-7

⌅ Configuration –

• Feature Extractor : O-AHRNet (Refer Chapter 3 Section 3.5.2.3)

• Batch Size : 8

• Robotic Arm : UR5 arm with RG2 gripper

• Description : To understand the change in performance when batch size is
modified.

84

Chapter 5. Results and Inferences

⌅ Inferences –

When a batch size of 8 (i.e. lower batch size) is used :

! Training becomes noisy with larger variations in success rate than usual.

! Also performance seems to increase gradually but takes more time steps to reflect in
the curves.

⌅ Training Plots –

Fig. 5.8: Training curves describing the mean length of episode, mean reward of episode and success rate
plotted against timesteps. We can see that when a lower batch size is used, the success rate curve is very
noisy but tends to improve gradually.

85

Chapter 5. Results and Inferences

5.1.3.8 Comparison-8

⌅ Configuration –

• Robotic Arm : UR5 with RG2 Gripper

• Aim : To analyze the change in performance when feature extractor is
modified.

⌅ Test Results –

Arch. Residual O-CNN (n = 4) O-AHRNet
Parameters 0.6348M 2.6614M
Success Rate 80.5% 87.5%
Mean Reward 319.37± 152.32 349.34± 123.41

Mean Episode Length 39.42± 34.70 29.57± 31.03
Mean Successful 25.71± 21.95 19.50± 17.04
Episode Length

Table 5.5: Test results obtained on evaluating the learnt policy on novel objects and novel scenes over 200
episodes

⌅ Inferences –

! O-AHRNet seems to perform better :

� It has a built-in capability to maintain good High Resolution feature representations
due to repeated multi-depth octree fusion features.

� Attention module is helpful for assisting the model to understand where to
focus.

! Qualitatively, after observing the performance in simulation, the action of the object
pickup was calculated and less wavering as compared to previous Feature Extraction
Architectures.

86

Chapter 5. Results and Inferences

⌅ Training Plots –

Fig. 5.9: Training Plots obtained after training the agent and the model with the specified configuration. We
can see that the performance of the O-AHRNet model tends to be better than the Residual O-CNN (n=4) due
to its advanced architecture design.

5.1.4 Summary of Notable Experiments

The following table describes a summary of notable experiments conducted as a part of the
Task I : Grasping Various Objects in Diverse Environments. Please note that more details
and metrics of each experiments can be found in the comparisons of Section 5.1.

87

Chapter 5. Results and Inferences

Expt No. Robotic Arm Feature Extractor (FE) # Parameters in FE Actor-Critic Arch. Other Configuration Success Rate (in %) / Comments

1. Panda Vanilla O-CNN 0.6795 M Vanilla No Colour Features 40.5 %

2. Panda Vanilla O-CNN 0.6795 M Vanilla Colour Features 45.5 %

3. Panda Residual O-CNN (n = 2) 0.5675 M Vanilla - 45.5 %

4. UR5 Residual O-CNN (n = 4) 0.6348 M Vanilla BatchNorm Present Performance degraded during training

5. UR5 Residual O-CNN (n = 4) 0.6348 M Vanilla - 80.5 %

6. Panda Residual O-CNN (n = 4) 0.6348 M Advanced - Performance does not improve

7. UR5 Residual O-CNN (n = 4) 0.6348 M Advanced - Absolute performance is low but
relatively better than Panda

8. UR5 O-AHRNet 2.6614 M Vanilla Low Batch Size Noisy but gradual performance increase

9. UR5 O-AHRNet 2.6614 M Vanilla - 87.5 %

Table 5.6: List of Notable Experiments conducted as a part of Task I. Here, for Actor Critic architectures,
“Advanced” means the Actor network has Dense Residual architecture and Critic network has Dense Residual
+ Dueling architecture (Refer Chapter 3 Section 3.5.3.2).

5.2 Task-2 : Dynamic Grasping of Moving Objects

This section provides details about the test setup, configuration, results, and analysis of
different experiments conducted as part of Task-2.

5.2.1 Configuration and Hyperparameter Details

As mentioned in Chapter 4, Object Pose Prediction (See Chapter 4 Section 4.3.2) is an
important part of the Dynamic Grasping setup. The following table provides information
regarding the hyperparameters used and configuration, specific to this pose prediction
subtask.

5.2.1.1 Dataset Used

For the DL models considered, a dataset needs to be created for providing supervision
through training. The input to these models is a sequence of object poses (ot�n, · · · ot�1, ot)

and the output is the predictions of future poses at different horizons
⇣
otf1 , otf2 , · · · , otfm

⌘

{Here, tfm = 2}. The generated dataset has the following features:

88

Chapter 5. Results and Inferences

Configuration Parameter Value
Activation Function ReLU

Regularisation Dropout
Optimizer Adam

Loss Function Mean
Squared Error

Fully Connected
Hidden Layer Size 100

LSTM Hidden Units 100
Batch Size 1000

Training Epochs 200
Input Sequence Length 5

Output Sequence Length 2

Table 5.7: List of various general configuration parameters that are used in the experiments of Task-2, for
Object Pose Prediction component.

• Separately created for Linear, Circular and Sinusoidal Cases.

• Consists of a sequence of 2000 waypoints*.

• In order to ensure variety in training data, the paths generated have different start
points and are in different directions.

Also, to make it easier for the model to learn, generalize well and be able to predict
even on starting from a random point on the trajectory, each sequence created from the
dataset is normalized to the start point i.e., normalized to the start of the sequence i.e.

8
>>><

>>>:
(0, · · · , ot�1 � ot�n, ot � ot�n)| {z }

Normalized Input Sequence

!

⇣
otf1 � ot�n, otf2 � ot�n

⌘

| {z }
Normalized Output Sequence

[Ground Truth]

9
>>>=

>>>;

*Different points sampled on the trajectory at regular intervals of the path

89

Chapter 5. Results and Inferences

5.2.2 Test Setup and Evaluation Metrics

In Task-2, we are considering the task of making the robotic arm learn how to grasp
dynamic known objects, whose motion is not known apriori. The test setup consists of
evaluating the robot’s performance and the dynamic grasping algorithm in 100 trials for
each of the object and each type of motion mentioned in Chapter 4 Section 4.6.

The different evaluation metrics that are considered for understanding the performance
of different methods is as follows:

1. Success Rate – The percentage of trials where the robotic arm was able to successfully
reach, grasp and lift the moving target.

2. Dynamic Grasping Time – The average length of trial, calculated over all the 100

trials.

5.2.3 Results

The results of various experiments that are conducted as a part of this task are shown
method by method.

90

Chapter 5. Results and Inferences

5.2.3.1 Method-1 : Kalman Filter

Test Results –

The following table provides the results for Method-1, using Kalman Filter, for various
objects and different types of motion. For each object :

• 1st sub-row corresponds to the success rate (in %) out of the 100 test trials conducted.

• 2nd sub-row corresponds to the average dynamic grasping time (in s) out of the 100
test trials conducted.

Object
Type of Motion Linear Linear

with Obstacles
Linear

with Top Shelf Circular Sinusoidal

Bleach 82 82 53 74 15
Cleanser 17.1268 18.0885 25.4492 16.2566 26.8206

Potted 86 82 55 85 8
Meat Can 12.6949 13.5474 25.6200 13.2181 25.0831

Power 88 84 31 81 16
Drill 9.8143 9.1870 22.1733 9.7166 17.9101

Mustard 87 82 47 78 10
Bottle 15.5122 18.6734 26.3625 15.1800 27.2544
Sugar 86 84 47 88 5
Box 13.3597 13.8027 25.4042 12.4203 22.9465
All 85.8 82.8 46.6 81.2 10.8

Objects 13.7016 14.6598 25.0018 13.3583 24.0029

Table 5.8: Table displaying the test results for Method-1 used in the Object Pose Prediction subtask. Details
of the method are described in Chapter 4.

5.2.3.2 Method-2 : Multi Layer Perceptron (MLP)

Training and Validation Loss –

Dataset Type
Metric Training Error Validation Error

Linear Case 4.4124⇥ 10�7 6.6252⇥ 10�5

Sinusoidal Case 2.8202⇥ 10�4 2.4454⇥ 10�4

91

Chapter 5. Results and Inferences

Test Results –

The following table provides the results for Method-2, using MLP model, for various
objects and different types of motion. For each object :

• 1st sub-row corresponds to the success rate (in %) out of the 100 test trials conducted.

• 2nd sub-row corresponds to the average dynamic grasping time (in s) out of the 100
test trials conducted.

Object
Type of Motion Linear Linear

with Obstacles
Linear

with Top Shelf Sinusoidal

Bleach 88 78 51 66
Cleanser 17.3113 18.3565 24.9106 22.5683

Potted 84 80 55 79
Meat Can 14.3890 13.5307 25.8155 15.7835

Power 91 91 30 88
Drill 10.2867 8.7359 21.9116 11.6545

Mustard 88 78 49 63
Bottle 16.4776 19.2276 26.4544 22.8853
Sugar 74 79 46 78
Box 15.1663 15.5597 25.9263 17.1639
All 85 81.2 46.2 74.8

Objects 14.7262 15.0821 25.0037 18.0111

Table 5.9: Table displaying the test results for Method-2 used in the Object Pose Prediction subtask. Details
of the method are described in Chapter 4.

5.2.3.3 Method-3 : Long Short Term Memory (LSTM)

Training and Validation Loss –

Dataset Type
Metric Training Error Validation Error

Linear Case 6.7592⇥ 10�6 1.8709⇥ 10�6

Sinusoidal Case 2.0078⇥ 10�4 7.8373⇥ 10�5

92

Chapter 5. Results and Inferences

Test Results –

The following table provides the results for Method-1, using LSTM model, for various
objects and different types of motion. For each object :

• 1st sub-row corresponds to the success rate (in %) out of the 100 test trials conducted.

• 2nd sub-row corresponds to the average dynamic grasping time (in s) out of the 100
test trials conducted.

Object
Type of Motion Linear Linear

with Obstacles
Linear

with Top Shelf Sinusoidal

Bleach 82 82 49 75
Cleanser 16.5867 18.6834 25.2586 21.0621

Potted 90 86 54 85
Meat Can 12.2976 13.0665 25.0033 15.6227

Power 85 89 30 82
Drill 9.3358 8.7544 21.6791 11.6880

Mustard 87 77 49 63
Bottle 17.2409 18.9082 25.7427 23.4247
Sugar 83 88 49 74
Box 14.0838 14.5649 25.2388 17.6545
All 85.4 84.4 46.2 75.8

Objects 13.9090 14.7954 24.5845 17.8904

Table 5.10: Table displaying the test results for Method-3 used in the Object Pose Prediction subtask. Details
of the method are described in Chapter 4.

5.2.4 Inferences

The following are some of the inferences that can be made by observing the results of
various experiments mentioned in the previous section:

• Kalman Filter works fairly well for predicting the pose of objects moving in a linear
path, for all the three linear cases namely: Linear, Linear with Obstacles and Linear
with Top Shelf cases (Refer Table 5.8).

• Kalman Filter’s performance is poor for the Sinusoidal motion case because constant
acceleration model is considered. So success rate is low and grasping time is high
for sinusoidal motion (Refer Table 5.8).

93

Chapter 5. Results and Inferences

• For the sinusoidal case, the MLP model performs fairly well but the best performing
model is the LSTM model which matches the common intuition. LSTM is able to
capture the non-linear temporal relations with ease (Refer Table 5.9 and Table 5.10).

• For all the methods, the performance for the case of Linear with Top Shelf is not that
great because of the top shelf obstacle right above the dynamic target. The grasping
time is also higher since more time is required for planning due to restrictions on
some trajectories.

• For all the methods, the performance for the case of Linear with Obstacles is success
rate is slightly lower and grasping time is also slightly higher, as compared to the
Linear case. This is expected due to presence of random obstacles. Note that, the
performance gap between both these cases is the least for the LSTM model, showing
its effectiveness.

Method
Type of Motion Linear Linear

with Obstacles
Linear

with Top Shelf Sinusoidal

Kalman 85.8 82.8 46.6 10.8
Filter 13.7016 14.6598 25.0018 24.0029

Multi Layer 85 81.2 46.2 74.8
Perceptron (MLP) 14.7262 15.0821 25.0037 18.0111
Long Short Term 85.4 84.4 46.2 75.8

Memory Network (LSTM) 13.9090 14.7954 24.5845 17.8904

Table 5.11: List of notable experiments performed as a part of Task II : Dynamic Grasping of Moving
Objects.

5.2.5 Summary of Notable Experiments

Table 5.11 describes a summary of notable experiments conducted as a part of the Task II
: Dynamic Grasping of Moving Objects. Please note that more details and metrics of each
experiments can be found in the Section 5.2. In this table, the success rates and dynamic
grasping time are average over all the five objects considered. For each method :

• 1st sub-row corresponds to the success rate (in %) out of the 500 test trials conducted.

94

Chapter 5. Results and Inferences

• 2nd sub-row corresponds to the average dynamic grasping time (in s) out of the 500
test trials conducted.

5.3 Chapter Summary

This chapter included the results of deploying the approaches developed for both tasks
in various test scenarios. For Task I, an extensive comparison of various experiments
conducted in the DRL setting was performed. Some experiments involving the incorporation
of novel DL ideas, such as advanced normalization techniques and improved architecture
of Actor and Critic Networks, motivated the need to research DRL analogues for them. For
the second task, extensive experimentation, comparison and inference based on obtained
results were made for different methods. Both tasks discussed until now were performed
and tested in simulation. Chapter 6 explores a more challenging aspect of setting up a
“real” robotic grasping system using a Kinova arm.

95

Chapter 6

Setting up a “Real” Robotic Grasping System

In this chapter, details about some of the basic tasks necessary to setting up a real-life
robotic system are discussed. Note that, it is possible to use perception to perform intelligent
grasping activities as an extension to this work.

6.1 Kinova j2s7s300 Robotic Arm

6.1.1 General Details

Fig. 6.1: Illustration of different components present in the Kinova j2s7s300 Arm and the Joystick
Controller. Note that, the joystick controller can be used as a safety stop to avoid damage in emergency
situations.

96

Chapter 6. Setting up a “Real” Robotic Grasping System

j2s7s300 arm is a 7-DoF flexible service robotic arm manufactured by Kinova (See
Chapter 1 Section 1.2.1). It is designed to work with human beings in a collaborative and
constructive manner, enhancing their abilities. mm. Striking a perfect balance between
size and power, the j2s7s300 arm is designed for seamless integration into a wide range
of applications. More technical details about it can be found in the datasheet*.

Fig. 6.2: A Glimpse of the Kinova Software Development Studio. It can be used for high-level control of the
robotic arm.

The Kinova arm can be controlled from the Kinova SDK as shown in Fig. 6.2. It
provides a wide range of features and capabilities. Users may transmit trajectories, check
their robot’s condition, enable admittance, and switch between Cartesian and angular control.
It is also possible to utilise the Kinova software to upgrade the robot’s firmware.

For getting more fine-grained control over the robotic arm and setting it up performing
complex ARG tasks, the better alternative would be to use the ROS stack† for Kinova
j2s7s300 arm. With the drivers provided in the ROS stack, it is possible to perform the
following, using the robotic arm:

*https://cutt.ly/lHwlZe0
†https://github.com/Kinovarobotics/kinova-ros

97

https://cutt.ly/lHwlZe0
https://github.com/Kinovarobotics/kinova-ros

Chapter 6. Setting up a “Real” Robotic Grasping System

(i) Joint position control – It can be used to move the joint angles of various joints present
in the arm in a relative or absolute manner. The following is an exemplary command
that will move the 4th joint of j2s7s300 robotic arm to rotate -20 degree relatively:

$ rosrun kinova_demo joints_action_client.py -v \

-r j2s7s300 degree - 0 0 0 -20 0 0 0

(ii) Cartesian position control – It can be used to move the robotic arm’s end effector in
the cartesian space (w.r.t base frame of the robot) in a relative or absolute manner.
The following is an exemplary command that will drive the j2s7s300 robotic arm
to traverse along -y axis for 3cm and rotate the gripper for +40 degree along arm axis,
relatively :

$ rosrun kinova_demo pose_action_client.py -v \

-r j2s7s300 mdeg - 0 -0.03 0 0 0 40

(iii) Finger position control – It can be used to move the fingers of the robotic arm’s
end effector. The following is an exemplary command that will close the fingers
completely :

$ rosrun kinova_demo fingers_action_client.py \

j2s7s300 percent - 100 100 100

6.1.2 Integration with MoveIt

MoveIt is a popularly used motion planning software compatible with ROS. Kinova ROS
stack also provides support for MoveIt. The repository consists of default configuration
files for j2s7s300 robotic arm. Some details regarding the MoveIt setup assistant configuration
is illustrated in Fig. 6.3.

98

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.3: Illustration of the various components present in the Kinova j2s7s300 robot’s MoveIt Setup
Assistant. Note the demonstration default poses present in the Configuration.

The robotic arm has been setup to use two move groups arm and gripper, as shown in
Fig. 6.3.

99

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.4: A Glimpse of the RViz window of Kinova MoveIt setup. On the left, we can see different tabs
for performing various activities. On the right, the robotic arm can be visualized and controlled with the
interactive markers.

The following is a brief list of some of the different functionalities that can be used after
integration of j2s7s300 robotic arm with MoveIt is successful :

• RViz MoveIt Plugin –

RViz can be used to visualize the robotic arm and other related aspects. When the real
robot is connected, the movements of the virtual and real arms are synchronized. It
also provides interactive markers (as highlighted in Fig. 6.4) so that the end effector
can be moved in a graphical manner with ease.

• Start and Goal Poses –

Under Motion Planning, the Planning tab provides the functionality to set a start and
goal pose of the arm to be used later. We can define custom poses to execute complex
trajectories.

100

Chapter 6. Setting up a “Real” Robotic Grasping System

• Plan and Execute Trajectories –

As shown in the blue rectangle of Fig. 6.4, we can plan the motions of the arm before
executing them. If there is any issue with the current trajectory, we can also replan
the motion.

• Adding Obstacles –

If the workspace is full of static obstacles, we can model the obstacles, so that the
robotic arm can be aware of them and avoid collisions. More details about this will
be given in Section 6.4.2.

6.2 Intel Realsense D415 RGBD Camera

Intel Realsense D415 RGBD Camera is a stereo vision depth camera system. The camera
subsystem’s compact size and simplicity of integration provide system integrators the ability
to build into a broad variety of applications. More technical specifications can be found in
the datasheet‡.

Fig. 6.5: Illustration of different components present in the Realsense D415 camera. The image on the right
shows the camera mounted on a tripod.

The ROS wrapper§ for the camera is also provided so that it can be easily integrated
into robotics applications.

‡https://cutt.ly/WHwSpwa
§https://github.com/IntelRealSense/realsense-ros

101

https://cutt.ly/WHwSpwa
https://github.com/IntelRealSense/realsense-ros

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.6: A Glimpse of the RViz window, consisting of a camera connected and publishing point cloud data
of the scene. On the bottom left, we can also see the normal RGB image captured by the camera.

6.3 Hand-Eye Calibration

One of the important tasks while creating a perception based "real" robotic grasping setup
is Hand-Eye Calibration. It essentially binds the camera and robotic arm so that both of
them can work together in synergy to pick the desired object.

6.3.1 Types of Setup

There are two common types of setup for Hand Eye Calibration (See Fig. 6.7):

1. Eye-on-Base Setup –

The perception module is mounted in a fixed place, so that it remains stationary when
the robotic arm moves.

102

Chapter 6. Setting up a “Real” Robotic Grasping System

2. Eye-in-Hand Setup –

The perception sensor is mounted directly on the robotic arm. The camera also moves
as the robotic arm moves.

Fig. 6.7: Different Kinds of Common Hand-Eye Calibration setups. Note that, the camera is highlighted in
both of the images.

6.3.2 Problem Description and Solution Theory

The camera’s coordinate system is used for all visual information it collects. In order
for the arm to utilise visual input, we must determine the transformation between robotic
arm’s end effector and camera coordinate systems. This is the central problem solved by
Hand-Eye Calibration.

103

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.8: “Real” robotic grasping setup made in IIST’s CVVR Laboratory. Note that, the workspace is
naturally constrained on both the sides by the wooden barriers of the table (one of them is visible in the
image with the switch slots). This setup has been used for Hand-Eye Calibration.

In this work, we consider the
Eye-on-Base setup as shown in Fig 6.8.
As pictorially represented in Fig. 6.9,
when we move the end effector to two
different poses, such that the marker can
be seen by the camera in both the cases.
It can be observed that in both the cases,
the transformation between the camera
and the robotic arm’s arm remains fixed.

Fig. 6.9: Illustration for understanding the
Hand-Eye Calibration using the Eye-on-Base
setup. Adapted from [30].

Using this fact, we can write the following equations:

X1 · Z · Y1 = X2 · Z · Y2

)
�
X�1

2 ·X1

�
· Z = Z ·

�
Y2 · Y

�1
1

�

104

Chapter 6. Setting up a “Real” Robotic Grasping System

where

Xp �! Transformation from Robotic Arm base to the end effector

for the pth sample.

Yq �! Pose of the camera in the Marker coordinate system

for the qth sample.

Z �! Transformation from the Robotic Arm’s end effector

to the marker.

Hence, if we solve for Z, we can equivalently the coordinate transformation from the
robotic arm’s base to the camera, which is of interest to us.

One way to solve this problem is to move the end effector of the robotic arm to various
sufficiently distinct poses and then create a dataset with (Xi, Yi) pairs. This can later be
given to an AX = XB solver such as [31] to get the desired transformation.

6.3.3 Solution Approach

MoveIt’s HandEye Calibration package¶ was used for performing the calibration using the
Kinova j2s7s300 arm (See Section 6.1) and Intel Realsense D-415 RGB-D camera (See
Section 6.2), in the setup shown in Fig. 6.8. Note that, the Aruco Board shown in Fig. 6.12
(a) was used as the marker.

The following is a summary of the procedure followed for performing the Hand-Eye
Calibration:

1. Move the robotic arm to a unique pose.

2. Register the end-effector pose.

3. Image the calibration object (marker) and obtain its pose.

4. Repeat the above three steps 10-15 times. In this work, these 11 samples were
collected.

5. Compute hand-eye transformation using the solver [31].

¶https://github.com/ros-planning/moveit_calibration

105

https://github.com/ros-planning/moveit_calibration

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.10: A glimpse of the Setup during the Hand-Eye Calibration. Note that, the Aruco board is held in the
Kinova arm’s gripper. The robotic arm is in a such a pose that the marker is visible to the RGB-D camera.

Fig. 6.11: Illustration of the Robot Base Coordinate Frame. Note that �Y is the direction pointing out of the
image.

106

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.12: Various Stages of Hand-Eye Calibration experiment carried out in IIST’s CVVR Laboratory. Note,
the final robotic arm’s base to camera transformation highlighted in red on the bottom right.

107

Chapter 6. Setting up a “Real” Robotic Grasping System

6.4 Blind Pick and Place

Fig. 6.13: “Real” robotic grasp setup in IIST’s CVVR Laboratory, adapted for the Blind Pick and Place Task.
Note that, the workspace is naturally constrained on both the sides by the wooden barriers of the table (Called
Sidewall Obstacle). The Joystick Controller is kept in close proximity to execute manual stop in case of an
emergency.

One of the most common and useful application that a robotic arm can be used for is
to Pick an object of interest from a particular location and Place it at the desired location.
In this work, we perform the Blind Pick and Place task using the Kinova j2s7s300 arm,
i.e. Pick and Place task is done without using any perception module. This is done by
feeding the system with predetermined Pick and Place locations. Note that, an immediate
extension to this work can be making the robotic arm intelligent by bringing a perception
sensor such as the Intel Realsense D415 camera.

108

Chapter 6. Setting up a “Real” Robotic Grasping System

6.4.1 Different Stages of the Task

The task of blind pick and place can be explained in the following chronological procedure:

1. Move to the HOME pose.

2. Move to the Pre-Grasp pose (backed off by some distance from the Grasp Pose).

3. Move to the Grasp Pose. Here the predetermined grasp pose is as follows (in Robotic
Arm’s Base Coordinate System):

Position : (�0.2962,�0.5724, 0.1354) ; Orientation Quaternion : (0.7158,�0.0893, 0.0541, 0.6904)

4. Close the fingers of the gripper to grasp the Object of Interest. Here, the object of
interest considered is a Bottle.

5. Move to the Post-Grasp pose. Here, considered same as the Pre-Grasp Pose.

6. Move to the Place pose. Here the predetermined place pose is as follows (in Robotic
Arm’s Base Coordinate System):

Position : (�0.7770,�0.1960, 0.7189) ; Orientation Quaternion : (0.5589,�0.3802,�0.2864, 0.6790)

7. Open the fingers of the gripper to release the object of interest in the desired Place
Location. Here, the Place Location considered is a cardboard Box.

8. Move to Post-Place pose.

9. Finally, move back to the HOME pose.

6.4.2 Modelling the Sidewall Obstacles

Note that, as shown in Fig. 6.13 there exist two sidewall obstacles on opposite sides of the
robotic arm. We need to take into account and inform the robotic arm about their presence
to avoid any collisions while executing motion trajectories. The MoveIt’s Motion Planning
Tab is used to do so as shown in Fig. 6.14.

109

Chapter 6. Setting up a “Real” Robotic Grasping System

Fig. 6.14: Modelling the Sidewall Obstacles to avoid collisions. Note that the side wall obstacles are
modelled as boxes as shown.

Fig. 6.15: A Glimpse of the RViz screen during the execution of the Blind Pick and Place Task. Note that,
the object of interest Bottle is modelled as a cylinder as shown.

110

Chapter 6. Setting up a “Real” Robotic Grasping System

6.4.3 Pictorial Demonstration

Fig. 6.16: Pictorial Demonstration of the Blind Pick and Place Task. The keyframes corresponding to various
steps of the task are shown in a chronological manner, in real robotic setup of IIST’s CVVR Laboratory with
a Kinova j2s7s300 arm. Note that the object of interest is circled in the first frame.

111

Chapter 6. Setting up a “Real” Robotic Grasping System

6.5 Chapter Summary

This chapter specifies the various tasks performed for setting up a “real” robotic grasping
setup while discussing its challenges. The complete “real” robotic grasping setup mainly
consisting of a Kinova j2s7s300 arm and Intel Realsense D415 camera. Later, details
about the successful demonstration of various tasks such as Hand-Eye Calibration & Blind
Pick and Place in the constrained robotic workspace of IIST’s CVVR Laboratory were
given.

112

Chapter 7

Conclusion and Future Work

This chapter includes a conclusion to this report on Autonomous Robotic Grasping and also
provides interesting future work ideas for pursuing further research.

7.1 Conclusion

This report on “Autonomous Robotic Grasping” was aimed at developing effective techniques
for skilled robotic manipulation tasks. A brief study of relevant ARG approaches was
discussed in Chapter 2. In this work, specifically two intricate ARG tasks were studied
extensively, namely :

• Task I - Grasping Various Objects in Diverse Objects, described in Chapter 3, involved
development of effective DRL algorithms for training a robotic arm agent to learn
how to grasp novel objects in random environments.

• Task II - Dynamic Grasping of Moving Objects, described in Chapter 4, required the
design of a systematic approach for grasping “known” objects traversing a motion
trajectory that is not known apriori.

As a part of both tasks, a series of effective Deep Learning algorithms were developed
for accomplishing various subtasks embedded in the main task. The results obtained on
testing the developed techniques are presented along with inferences in Chapter 5 for both
tasks.

113

Chapter 7. Conclusion and Future Work

In Task I, it was shown through various experiments that in addition to improving the
RL algorithm side of DRL techniques, it might be beneficial to do research for developing
advanced DNN architectures. In this work, considering the improvements made in the
architectures of Feature Extractor (See Chapter 3), the best performing model was the
O-AHRNet model, which used repeated multi-depth octree fusion features (to maintain
high-resolution representations) and an attention module consisting of the channel and
spatial attention. Using O-AHRNet model as the Feature Extraction Backbone, the RL
agent was able to achieve more than 87% success rate for grasping novel objects in random
scenes, showing its efficacy. Other experiments have motivated the need for designing
novel RL aware normalization techniques and effective architectures for Actor-Critic Heads.

As a part of Task II, it was discovered that the usage of DL models could prove
useful for predicting the motion of dynamic known objects. In this work, considering
the improvements made in the Object Pose Prediction component (See Chapter 4), the best
performing model for objects moving in Sinusoidal non-linear trajectories was the Long
Short Term Memory (LSTM) model. Incorporating this model into the dynamic grasping
pipeline, the average success rate obtained for grasping dynamic objects in Sinusoidal,
random motion was more than 75%, showing the power of LSTMs to model complex
non-linear interactions in sequence to sequence problems. Some of the results have hinted
at combining DL methods with non-DL methods, such as Kalman Filter, to get better future
pose estimates, thereby improving dynamic grasping.

Furthermore, in this work, various challenges and tasks, such as Hand-Eye Calibration
& Blind Pick and Place, that are involved in setting up a real-world robotic grasping system,
were explored in Chapter 6 along with results and demonstrations conducted in IIST’s
CVVR Laboratory. These motivated the use case of having a perception-based intelligent
grasping system for performing skilled manipulation tasks.

Moreover, such intelligent ARG systems with the ability to efficiently manipulate objects
can prove to be invaluable in challenging space environments. They can be incorporated
into space missions to perform various intravehicular and extravehicular activities efficiently.
For example, a potential application can create a system to perform maintenance or repair
tasks independently or cooperate in space with an astronaut. Integrating such technologies
in future space missions can increase exploration productivity, maximize performance and
improve scientific return.

114

Chapter 7. Conclusion and Future Work

7.2 Future Work

Some of the directions for future work, both immediate and long term, that can be pursued
further as an extension of this project are as follows :

• Task-1 : Grasping Various Objects in Diverse Environments –

! Currently most the DRL research is focused on improving the algorithmic part
of the approach. But as shown in this work*, development of effective DL
models can also lead to significant improvemnts in the agent’s performance.
Hence, improving the architectures of various DL models further can be a
interesting idea for extension to this project.

! As shown in Chapter 5 Section 5.1 (specifically Comparison-5 and Comparison-6),
the performance of the agent is not that great when architectures of actor and
critic network are modified. So, there is a need for performing more experiments
in different combinations and for longer to isolate the problem (either in Dense
Residual, Duelling Critic, Spectral Normalisation or any combination of them).
This may lead to some exciting insights.

! Also, as shown in Comparison-3 of Chapter 5 Section 5.1, the use of BatchNorm
layer in the Basic Unit (Refer Chapter 3) reduced the performance of the agent
drastically. More research and experimentation can done for finding what an
effective normalization strategy can be for DRL algorithms.

! Furthermore, incorporating the Adversarial framework inside the DRL setup
can prove to be useful. More work needs to be done on how one can formulate
this.

• Task-2 : Dynamic Grasping of Moving Objects –

! In Chapter 4 Section 4.7, different methods to predict the future pose of a
dynamic target were discussed. Here, either DL methods (MLP model and

*(Refer Approach from Chapter 3 and corresponding results from Chapter 5)

115

Chapter 7. Conclusion and Future Work

LSTM model) or other methods such as Kalman Filter were described. One
possible extension to this work is to design a method that uses both of these
approaches [32] [33] constructively to get better estimates.

! In this work, the dynamic grasping algorithm was designed using various components
such as Object Pose Retrieval, Object Pose Prediction, Grasp Database, Grasp
Ranking Functions and Adaptive Trajectory Synthesis (See Chapter 4 Section 4.3).
Most of these involved usage of DL and IK methods. One possible future work
is to design an RL framework that takes RGB-D or RGB observations of the
scene at regular intervals of time and then learns a policy to perform Dynamic
Grasping.

• “Real” Robotic Grasping Setup –

! One immediate extension of this work can be incorporating perception-based
intelligence into the Blind Pick and Place task (See Chapter 6 (See Section 6.4).
Specifically a perception sensor such as Intel Realsense D415 RGB-D camera
can be used with Object Pose Estimation algorithms such as DOPE [2] to
automate the grasping workflow. An example of this type of work can be found
in [34].

! An interesting application that can be developed is to mount the robotic arm on
a mobile platform and then perform Mobile Manipulation. Indoor Navigation
techniques can be used to move the mobile base in an known environment. An
example of this type of work can be found in [30].

116

Bibliography

[1] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from object
localization, object pose estimation to grasp estimation for parallel grippers: a
review,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1677–1734, 2021.

[2] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep
object pose estimation for semantic robotic grasping of household objects,” arXiv
preprint arXiv:1809.10790, 2018.

[3] I. Akinola, J. Xu, S. Song, and P. K. Allen, “Dynamic grasping with reachability and
motion awareness,” in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2021, pp. 9422–9429.

[4] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning
synergies between pushing and grasping with self-supervised deep reinforcement
learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 4238–4245.

[5] K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2fit: Learning shape priors for
generalizable assembly from disassembly,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 9404–9410.

[6] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic grasping: A
real-time, generative grasp synthesis approach,” arXiv preprint arXiv:1804.05172,
2018.

[7] O. Kroemer, S. Niekum, and G. D. Konidaris, “A review of robot learning for
manipulation: Challenges, representations, and algorithms,” Journal of machine
learning research, vol. 22, no. 30, 2021.

[8] A. Orsula, “Deep Reinforcement Learning for Robotic Grasping from Octrees,”
Master’s thesis, Aalborg University, 2021.

117

BIBLIOGRAPHY

[9] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn: Octree-based
convolutional neural networks for 3d shape analysis,” ACM Transactions On Graphics
(TOG), vol. 36, no. 4, pp. 1–11, 2017.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[11] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” in International conference on machine learning. PMLR,
2018, pp. 1587–1596.

[12] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[13] A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov, “Controlling overestimation
bias with truncated mixture of continuous distributional quantile critics,” in
International Conference on Machine Learning. PMLR, 2020, pp. 5556–5566.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[15] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention
module,” in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 3–19.

[16] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “Eca-net: Efficient channel
attention for deep convolutional neural networks,” 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 11 531–11 539, 2020.

[17] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 5693–5703.

[18] N. Bjorck, C. P. Gomes, and K. Q. Weinberger, “Towards deeper deep reinforcement
learning with spectral normalization,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

118

BIBLIOGRAPHY

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[20] M. Wu, Y. Gao, A. Jung, Q. Zhang, and S. Du, “The actor-dueling-critic method for
reinforcement learning,” Sensors, vol. 19, no. 7, p. 1547, 2019.

[21] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling
network architectures for deep reinforcement learning,” in International conference
on machine learning. PMLR, 2016, pp. 1995–2003.

[22] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,”
1998.

[23] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[24] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization
techniques for efficient motion planning,” in 2009 IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 489–494.

[25] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp:
Stochastic trajectory optimization for motion planning,” in 2011 IEEE international
conference on robotics and automation. IEEE, 2011, pp. 4569–4574.

[26] I. Akinola, J. Varley, B. Chen, and P. K. Allen, “Workspace aware online grasp
planning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 2917–2924.

[27] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb
object and model set: Towards common benchmarks for manipulation research,” in
2015 International Conference on Advanced Robotics (ICAR), 2015, pp. 510–517.

[28] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“Benchmarking in manipulation research: Using the yale-cmu-berkeley object and
model set,” IEEE Robotics Automation Magazine, vol. 22, no. 3, pp. 36–52, 2015.

[29] A. B. (www.kalmanfilter.net), “Online Kalman Filter Tutorial.”

119

BIBLIOGRAPHY

[30] J. Hou, Y. Zhang, A. Rosendo, and S. Schwertfeger, “Mobile manipulation tutorial,”
2020.

[31] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The International
Journal of Robotics Research, vol. 18, no. 3, pp. 286–298, 1999.

[32] Z. Shi, “Incorporating transformer and lstm to kalman filter with em algorithm for
state estimation,” arXiv preprint arXiv:2105.00250, 2021.

[33] T. Bao, Y. Zhao, S. A. R. Zaidi, S. Xie, P. Yang, and Z. Zhang, “A deep kalman filter
network for hand kinematics estimation using semg,” Pattern Recognition Letters,
vol. 143, pp. 88–94, 2021.

[34] S. Rakhimkul, A. Kim, A. Pazylbekov, and A. Shintemirov, “Autonomous object
detection and grasping using deep learning for design of an intelligent assistive robot
manipulation system,” in 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC). IEEE, 2019, pp. 3962–3968.

120

	Thesis
	Acknowledgements
	Abstract
	Abbreviations
	Introduction
	Problem Statement and Objectives
	Basic Description of Robotic Arms Utilized
	Kinova Jaco2 Arm
	UR5 Arm
	Franka Emika Panda Arm

	Report Organization
	Key Contributions

	A Brief Review of Literature
	Typical Robotic Grasping System
	Categorizing Grasping Approaches
	Overview of Related ARG Approaches
	Review of Paper-m
	Review of Paper-za
	Review of Paper-z

	Relevance of ARG Systems
	Challenges of ARG
	Chapter Summary

	Task I - Grasping Various Objects in Diverse Environments
	Task Formulation
	Observation Space
	Action Space
	Reward Function

	Approach Design
	A Brief Overview of RL
	Relevant DRL Algorithms
	High Level Block Diagram

	Pictorial Demonstration
	Implementation Details
	Deep Learning (DL) Architectures
	Octree Processing
	Feature Extraction Backbone
	Actor-Critic Heads

	Chapter Summary

	Task II - Dynamic Grasping of Moving Objects
	Task Description
	A Note on Inverse Kinematics (IK)
	Integral Components of the Approach : An Overview
	Object Pose Retrieval
	Object Pose Prediction
	Grasp Database
	Grasp Ranking Functions
	Adaptive Trajectory Synthesis

	Algorithmic View of the Approach
	Pictorial Demonstration
	Implementation Details
	Object Pose Prediction : Approach Design
	Need for Pose Prediction
	Method-1 : Kalman Filter
	Method-2 : Multi Layer Perceptron (MLP)
	Method-3 : Long Short Term Memory Network (LSTM)

	Chapter Summary

	Results and Inferences
	Task-1 : Grasping Various Objects in Diverse Environments
	General Configuration and Hyperparameter Details
	Test Setup and Evaluation Metrics
	Results and Analysis
	Summary of Notable Experiments

	Task-2 : Dynamic Grasping of Moving Objects
	Configuration and Hyperparameter Details
	Test Setup and Evaluation Metrics
	Results
	Inferences
	Summary of Notable Experiments

	Chapter Summary

	Setting up a ``Real'' Robotic Grasping System
	Kinova j2s7s300 Robotic Arm
	General Details
	Integration with MoveIt

	Intel Realsense D415 RGBD Camera
	Hand-Eye Calibration
	Types of Setup
	Problem Description and Solution Theory
	Solution Approach

	Blind Pick and Place
	Different Stages of the Task
	Modelling the Sidewall Obstacles
	Pictorial Demonstration

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Bibliography

	Sim_
	Autonomous Robotic Grasping - Copy 139
	Autonomous Robotic Grasping - Copy 140
	Autonomous Robotic Grasping - Copy 141
	Autonomous Robotic Grasping - Copy 142
	Autonomous Robotic Grasping - Copy 143
	Autonomous Robotic Grasping - Copy 144
	Autonomous Robotic Grasping - Copy 145

