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Problem Statement

Aim

Create a 6D pose estimation
pipeline for pick and place in a
robotic simulation environment.
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Focus of the Work

Design, development and pipeline-incorporation of DL-based pose
estimation models with the qualities :

1 Efficiency : Use of only RGB image and no depth information

2 Speed : Use of no post hoc refinement stages

3 Accuracy : Good performance on relevant metrics
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Phases of the Approach

Training Phase : Collect domain randomized, labelled
synthetic data from simulation scene and train the model !

Test Phase :
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Pose Estimation Models
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Model-1 : UnityVGG16

Template based approach that directly regresses the pose
information

Transfer Learning utilized
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Model-2 : Pose6DSSD

Correspondence based approach where we first the regress the
2D image coordinates of certain keypoints

(No FC Layers)

PnP algorithm used to predict the final 6D object pose

(Not E2E trainable)
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Model-3 : DOSSE-6D (v2) [Deep Object Single Stage Estimator]

Correspondence based approach similar to the Pose6DSSD,
additional elements are :

Backpropagatable PnP (BPnP) Module [2] → Define a
stationary constraint and Implicit Derivative

Attention Module

Expeditious Object Pose Estimation for ARG



Problem Statement
Overview of the Approach
Pose Estimation Models

Notable Results
References

Model-3 : DOSSE-6D (v2)

[Deep Object Single Stage Estimator]

Correspondence based approach similar to the Pose6DSSD,
additional elements are :

Backpropagatable PnP (BPnP) Module

Attention Module [10][11]→ Convolution based efficient
channel and spatial attention, using MaxPool & AvgPool
features
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Model-4 : AHR-DOSSE-6D [AHR – Attention High Resolution]

Best performing model due to the following elements :

1 Single Stage E2E trainable, correspondence approach without
post-refinement stages → BPnP Module

2 Use of attention module → Channel + Spatial

3 Maintain High-Resolution feature representations throughout
the backbone [7] → AHRNet Backbone

4 Increased input image resolution → Parameter efficiency
maintained

5 Use of more geometrical details → Farthest Point Sampling
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AHR-DOSSE-6D : High Level Block Diagram
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Experimental Configuration

Two simulation scenes –

Simple and Cluttered

Experiments – Same

Environment and Cross

Environment cases

Mixture Loss function considered : [ For AHR-DOSSE-6D ]

L =

Indirect Supervision︷ ︸︸ ︷
λheatLheat + λreprojLreproj +

Direct Supervision︷ ︸︸ ︷
λaddLadd

Lheat =
1

S

S∑
s=1

1

K

K∑
k=1

∥∥∥Hs,pred
k −Hs,true

k

∥∥∥2
F

; Lreproj =
1

K

K∑
i=1

∥xi − πi∥2

Ladd =
1

m

∑
x∈M

∥(Rx+ T)− (R̃x+ T̃)∥2
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Results
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Results on Unity Synthetic Data [Cube Object, TEST SPLIT : 3000 RGB images]

ADD =
1

m

∑
x∈M

∥(Rx + T) − (R̃x + T̃)∥ ( Lower is better ! )

S.No.
Approach

Expt. Config.
Train-Clutter

+
Test-Clutter

Train-Clutter
+

Test-Simple

Train-Simple
+

Test-Simple

Train-Simple
+

Test-Clutter

1.
UnityVGG16

1.6801 16.5287 2.0248 53.7345

2.
Pose6DSSD

1.3976 9.0066 1.0054 39.0549

3.
DOSSE-6D v1

1.2150 3.9213 0.9789 58.1505

4.
DOSSE-6D v2

0.8836 10.5477 0.7604 41.8551

5.
DOSSE-6D v3

0.9540 30.3129 1.0083 48.6070

6.
AHR-DOSSE-6D 0.4192 22.6130 0.4685 92.2395

Table: Table displaying the average ADD metric values (in cm)
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Results on LINEMOD Benchmark [ Data Augmentation used ]

ADD =
1

m

∑
x∈M

∥(Rx + T) − (R̃x + T̃)∥ ( Lower is better ! )

S.No.
Approach

Object Cat

(d = 15.50 cm)

Benchvise

(d = 28.69 cm)

Lamp

(d = 28.52 cm)

Can

(d = 20.20 cm)

Iron

(d = 30.32 cm)

1. SSD-6D [5] 0.51 0.18 8.20 1.35 8.86

2. Tekin et al. [8] 41.82 81.80 71.11 68.80 74.97

3. DOSSE-6D v1 33.45 86.77 74.94 60.19 60.22

4. DOSSE-6D v2 50.23 94.53 85.55 78.01 82.45

5. AHR-DOSSE-6D LR 45.89 94.30 94.36 84.14 88.10

6. AHR-DOSSE-6D HR 68.31 96.69 97.86 95.02 93.63

Table: Table displaying the ADD metric pass rates (in %).

Input Image sizes :
DOSSE-6D v1, AHR-DOSSE-6D LR → 224 × 224 × 3
DOSSE-6D v2, AHR-DOSSE-6D HR → 448 × 448 × 3
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Results on LINEMOD Benchmark [ Graphical ]
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Thankyou!
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