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Abstract—Text is one of the most effective forms of commu-
nication among human beings. Recognizing text automatically
& efficiently in everyday scenes is an invaluable tool in many
applications like Document Analysis, Autonomous Vehicles, Aug-
mented Reality etc. In this project, we try to design, explore
and experiment with various deep learning architectures for
both Regular & Irregular Text Recognition. We also try to
provide an analytical understanding of the reason for their good
performance on various images from different perspectives. These
analyses basically “unblackbox” the peculiar but interesting
aspects of the models, and also lead us to some insightful possible
extensions of this project.

Index Terms—Scene Text Recognition, Computer Vision, Docu-
ment Analysis, Deep Learning, Spatial Transformation Networks

I. INTRODUCTION

Human beings have had the zeal to automate various tasks
in their daily lives and build remarkable things since time
immemorial. Recognizing text in images of scenes everywhere
around us, to enrich its information content, is one such
task. The recent advances in the field of Deep Learning and
Computer Vision have opened up new avenues of research and
significantly improved performance for Scene Text Recogni-
tion.

Scene Text recognition has basically two variants of infor-
mation intertwined : Visual and Semantic. Especially in natural
scenes, the aforementioned typical aspect is what makes this
task challenging and many researchers have devised several
intuitive solutions over the years.

The various techniques developed can be broadly classified
to solve two sub-tasks of increasing difficulty level namely:
Regular and Irregular Text Recognition. Nowadays, it is
becoming popular to do text localisation to detect ROI and
use an OCR engine(like Tesseract) to determine the text in a
natural scene[1].

There are two types of recent methods for irregular text
detection: Spatial Transformation Network(STN)[2] and Fully
Convolutional Network(FCN)[3] by [4]. Convolutional Neural
Networks lack of ability to be spatially invariant to the input
data in a computationally and parameter efficient manner. The

STN explicitly allows the spatial manipulation of data within
the network, giving neural networks the ability to actively
spatially transform feature maps, conditional on the feature
map itself, resulting in models which learns in-variance to
translation, scale, rotation and more generic warping[5].

Zhou et al. developed an End2End trainable arbitrary ori-
entation network (AON)[6], solving the problem of FCN[4]
and STN[2] to directly capture the deep features of irregular
texts, combined with an attention-based decoder to generate
character sequences using word-level annotations for training.

In one of the other approaches, a Line-fitting transformation
is used to correct perspective and curvature distortions, where
the line passing through the middle of the text and by iterative
method is fit with a polynomial equation to and an effort is
made to make that line horizontal along with the text[7].

In this work, we try to explore and experiment with various
deep learning models for both Regular & Irregular Text
Recognition and try to provide a analytical understanding
of the reason for their good performance on various images
from various vantage points. This report is organized into the
following sections :

→ Section II is a basic overview of all the elemental
“blocks” used at different stages in various models.

→ The various details related to the block level model de-
sign, experimental setup and other implementation details
are provided as a part of Section III.

→ The results obtained from various experiments conducted
by us on various popular datasets are summarized and
compared with state-of-the-art techniques in Section IV.

→ In Section V, we provide a detailed analysis from various
perspectives about the performance of different models
that we experimented on.

→ In Section VI, we conclude our report and briefly review
of some avenues of further research.

II. OUR METHODOLOGY

Our approach is designed based on the typical top level
block diagram shown in FIG. 1. Visual Features are first
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FIG. 1: High Level Block Diagram

extracted from the input image, in an automated fashion by
the Visual Feature Extraction stage. These features are then
mapped into sequence of feature of vectors which serve as
the input for the Semantic Feature Extraction stage, that
basically generates a probability distribution over the output
classes, based on the semantic content inferred. The job of
the Transcription Layer is to convert this distribution into a
predicted label sequence using a suitable decoding strategy.
Note that, in some of our models we also pass the images
through an auxiliary Pre-Correction Stage, in order to get
its rectified version by learnt spatial transformations, that
generally prove to be helpful for subsequent stages.

A. Visual Feature Extraction Stage

Visual Features are generally extracted in a effective man-
ner by CNN’s, due to their added benefits of translational
invariance, weight sharing and sparse connectivity.

Operations Architectural Parameters
2D Convolution #maps : 512, k : 2× 2, s : 1, p : 0
2D MaxPooling Window: 1× 2, s : 2
2D BatchNorm −
2D Convolution #maps : 512, k : 3× 3, s : 1, p : 1
2D BatchNorm −
2D Convolution #maps : 512, k : 3× 3, s : 1, p : 1
2D MaxPooling Window: 1× 2, s : 2
2D Convolution #maps : 256, k : 3× 3, s : 1, p : 1
2D Convolution #maps : 256, k : 3× 3, s : 1, p : 1
2D MaxPooling Window: 2× 2, s : 2
2D Convolution #maps : 128, k : 3× 3, s : 1, p : 1
2D MaxPooling Window: 2× 2, s : 2
2D Convolution #maps : 64, k : 3× 3, s : 1, p : 1

Input Image W × 32 gray-scale image

TABLE I: Architecture of Basic CNN[8]

We experiment with two different blocks for this stage,
namely Basic CNN[8] and Modified ResNet18, whose archi-
tectural parameters are displayed in TABLE I and TABLE II
respectively.

Note that, the Modified ResNet181 possesses the following
advantages, also reflected in performance, due to the use of
residual skip-links[9] :

(i) Mitigates the Vanishing Gradients problem in deep net-
works.

(ii) Instead of say H(x), initial mapping, the network learns
to a fit F (x) := H(x) − x (turns out to be a simpler
mapping to learn most of the times) which gives H(x) :=
F (x) + x.

(iii) Identity mappings through skip links avoid excessive
non-linear destructive morphing of the input and help
preserve the necessary features.

TABLE II: Architecture of Modified ResNet18

B. Semantic Recognition Stage

The Semantic Recognition Stage predicts a conditional label
distribution yt for each frame xt in the feature sequence
vectors x = x1, . . . , xT . Generally, RNN’s because of their
following features, are used in this stage :
• Capture contextual information in a sequence which leads

to good generalization as language is generally context
dependent.

• Capable of operating on sequences of arbitrary lengths,
traversing from <SOS> to <EOS> tags.

In this work, for our models we use a Bidirectional, two
layered stacked LSTM (Long Short Term Memory) network
as shown in the Fig. 2. The intuition behind choosing this
network is summarized in the following distinctive advantages:

(i) Long-Term Dependencies are efficiently captured2

1Inspired by the deeper versions of the ResNet[9] used for ImageNet Object
Classification

2This is made possible by the use of Selective Read, Write, Forget
operations using multiple gates (input, output, forget gates resp.)
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(ii) Solves the Vanishing Gradients problem in deep net-
works3

(iii) The use of a Bidirectional network is beneficial due to
the presence of typical useful context from sides in scene
text images.

FIG. 2: Structure of BiLSTM[8]

C. Map to Sequence Block

The output of the Visual Feature Recognition stage is
mapped into a sequence of feature vectors as mentioned to
be given as an input to the next stage, by passing it through
the Map to Sequence Block. Each vector corresponds is a
descriptor of a rectangular receptive field portion of the image
as shown in FIG. 3. Note that, during weight updation the

FIG. 3: Illustrative Representation of a Receptive Field[8]

error differentials are backpropagated using BPTT4 algorithm,
and then “sequences” of error differentials are concatenated
to maps for using BackPropagation to train lower layers i.e.,
basically this Map to Sequence operation is inverted.

D. Transcription Layer

In order to convert the sequence of probability distributions
{yt|t = 1, 2, · · · , T} predicted by the Semantic Recognition

3This is made possible by the use of Selective Read, Write, Forget
operations using multiple gates (input, output, forget gates resp.)

4Back-Propagation Through Time

stage and also, for getting a alignment-free loss function for the
End2End training of the network we utilize the Connectionist
Temporal Classification Approach. Note, that each pdf yt is

FIG. 4: Procedure for CTC Decoding

over all the Output classes (labels) and a “blank” character
introduced by CTC. Now, a probability for the ground truth
label G conditioned on the pdf sequence {yt} is calculated
by the marginalizing over a set of valid alignments5 Avalid as
follows :

p(G | {yt}) =
∑

A∈Avalid

[
T∏

t=1

pt (at | {yt})

]
where pt (at | {yt}) is the probability of having a particular

element (character) at at time t according to a given valid
alignment A.

The Loss Function L is then defined as:

L = −
∑

Xi,Gi∈X

log p (Gi | {yt}i)

where Xi is the ith training image and Gi is the ith training
ground truth label.

During the inference stage, we consider a Lexicon-free
Transcription by considering the predicted label as the CTC
Decoded version (See FIG. 4) of the alignment obtained by
taking the argmax element (character) of each pdf in {yt}.

E. Pre-Correction Stage

In Visual Feature Extraction stage, one of the reasons for
choosing a CNN was its translational invariance property6.
Now, in order to try to make the model insensitive to rotations
and also, be able to perform scaling, cropping and possibly
other non-rigid deformations[5], we introduce an auxillary
block called Spatial Transformer Network (STN)[5][2] before

5Alignments are mapped onto labels using the CTC Decoding Procedure
shown in FIG. 4

6Facilitated by the use of MaxPool Layers
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Visual Feature Extraction, in some of the models considered
for experimentation (on irregular text images).

FIG. 5: Block Diagram for the Spatial Transformation Network (STN)[2]

A brief description of the various sub-blocks of the STN is
shown below[2]:
• Localisation Network– Here, basically we perform a

regression for locating a set C of k “fiducial points” on an
image7 using a simple CNN with Conv2D, MaxPool2D
and fully connected layers8. The output fully-connected
layer uses tanh(.) activation and outputs 2k values
(reshaped to k co-ordinates).

• Grid Generator– The Grid Generator basically creates a
sampling grid, for mapping points of a standard normal-
ized co-ordinates set C ′ of the rectified image to a region
defined by C on the input image, by using the Thin Plate
Spline (TPS) transformation[2].

FIG. 6: An illustration of TPS Transformation[2]

• Sampler– Finally, the Sampler block takes in the sam-
pling grid generated and uses bilinear interpolation to
find the pixel values of the rectified image. Note that
the sampler is differentiable, allowing End2End training
using BackPropagation.

III. EXPERIMENTAL SETUP

A. Datasets

We used Synth90k dataset for training purpose and other
popular datasets such as IIIT5k, SVTP, ICDAR13, ICDAR15,
CUTE80 etc. for testing purpose.

Synth90k is Synthetically generated dataset contain total
9 million images covering 90k English words and ground
truth of all the images. From 9 million, 7.2 million images
are for training and others for validation and testing. This
dataset contains mostly regular images. we trained models for
around 0.5 million images from this due to time and resources
constraint.[10]

7A normalized co-ordinate system is used with the image centered at origin
8specific details can be found in the code implementation

IIIT5k is developed from google image search by IIIT. It
contains total 5000 almost regular images.[11]

SVT and SVTP contains images which are harvested from
the google street view. SVT is the original dataset which
contains 647 uncropped images. SVTP is the improved version
of that which contains 645 cropped images with ground truth.
the original images are mostly irregular. we used improved
version SVTP for testing purpose.[12]

ICDAR13 is the dataset from Robust reading competition
which contains around 1095 regular images.[13]

ICDAR15 is the next version of ICDAR13 where most of
the images are from ICDAR13. It contains total 2077 images
which includes regular as well as irregular. It also includes the
real-life factors such as Occlusions, Motion blur, Noise etc. in
the images.[14]

CUTE80 is also known as curved dataset which contains
288 high resolution curved text images. Initially, it used for
text detection but later people are using for text recognition
also.[14]

Born-digital images is generated from web and emails such
as headings, advertisement etc. It is also from Robust read-
ing competition contains 541 low-resolution almost regular
images.[13]

English character dataset is generated by using different
font styles which contains total 62 batches with 1016 images
per batch. this 62 batches are from Uppercase Alphabets (26),
Lowercase Alphabets (26) and Arabic Numerals (10). Most of
the images are regular with different font styles.

B. Implementation details

Pytorch framework was used for training, testing and val-
idation purpose. We used NVIDIA RTX GeForce 2060 GPU
for training and validation while Google Colab’s Tesla GPUs
for testing on various other datasets.

PyTorch’s Lightning Data Collator and Data Transformer
was used for pre-processing of images such as RGB to
gray-scale conversion, transforming, resizing and normalizing
wherever required in the model. The Train-Validation Split
considered is 80% and 20 % respectively9. For the purpose
of training, we use the CTC Loss (See Section II-D) and
optimizer considered is the Adam Optimizer. Note that, check-
pointing of models is done, whenever there is a decrease in
the validation loss after every epoch.

C. Model design

Our whole work can be viewed in two stages namely : (1)
Regular Text Recognition and (2) Irregular Text Recognition

1) Regular Text Recognition: The first model which we
considered for this stage is Basic CNN + BiLSTM (See FIG.
7). It takes an image as input which passes through the pre-
processing layer followed by main block basic CNN+BiLSTM
and then Transcription layer, which consists of CTC loss

9Note that, batching of images is considered (32 images/batch for smaller
models and 64 images/batch for larger models)
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function and CTC decoding. Note that, we designed all the
blocks with parameters as mentioned in the previous sections.

FIG. 7: General Block Diagram of the models used for Regular Text Recog-
nition. The first model uses Basic CNN and the second one uses Modified
ResNet18 respectively as CNN.

The second model considered is ResBiL which consists of
ResNet+BiLSTM (See FIG. 7).

As a Transfer Learning Experiment, we also trained a model
FrozenResNet+BiLSTM by freezing the ResNet block weights
obtained from a pretrained ResNet model trained on ImageNet
Dataset for image classification. The results were poor as
expected because the features extraction is task-specific and
features extracted for image classification could be completely
different from those extracted for scene text recognition.

2) Irregular Text Recognition: Here, an extra STN block is
prepended to the Visual Feature Extraction Stage for correcting
the orientation of the images in both the previous models
as discussed in the previous sections. So, the first model
considered here is STN + CNN + BiLSTM (See FIG. 8).

FIG. 8: General Block Diagram of the models used for Irregular Text
Recognition. The first model uses Basic CNN and the second one uses
Modified ResNet18 respectively as CNN.

The second model considered in this stage is STN+ResBiL
(See FIG. 8).

D. Model Evaluation matrix

We used character accuracy (CA) and Word accuracy (WA)
as the evaluation parameters for testing of models on various
datasets. They can be computed as per the equations 1 and 2
respectively, shown below :

CA(pred, truth) =
(
1− Lev(pred, truth)

modtruth

)
× 100% (1)

WA(pred, truth) = (pred == truth)× 100% (2)

where, Lev((pred, truth)) is the Levenshtein Distance
which is the min. of operations (substitution, insertion and
deletion) to be performed to convert one string to another.

For batch containing more than one image, CA and WA can
be calculated as average of all images’ CA and WA as per the
above equations.

IV. RESULTS

In this section, we present the results of our approach. Since
we have just used ∼7% of training dataset(Synth90k) and
other works might have adopted the complete training sets
(or might have used some special data augmentation schemes
to increase the number of training samples), therefore it is
impossible to make an absolutely fair comparison between
different approaches. However, this analysis is very useful for
evaluating the development of state-of-the-art methods in this
field and establishing future directions.

Table III shows the comparison of results (Word Accu-
racy) between some of the state-of-the-art methods and our
approaches over standard benchmark datasets, we can observe
that there is a considerable difference in the word accuracy of
our methods and other works because of lesser size of training
dataset. Table IV shows the comparison of results between our
different approaches over over the datasets mentioned in Sec-
tion III-A. We can observe that the STN+ResNet+BiLSTM
model gives best results among all the models that were
experimented on.

IIIT5k ICDAR13 ICDAR15
Liu et al. [15] 85.2 91.1 86.7

Zhang et al. [16] − 89.4 68.1
Luo et al. [17] 91.2 92.4 68.8
Du et al. [18] 88.6 93.8 79.9

Zhang et al. [19] 94.7 94.2 81.8
Chen et al. [20] 93.6 92.9 71.5
Yang et al.[21] 88.5 90 68.8

Basic CNN+BiLSTM 65.55 73.24 36.18
ResNet+BiLSTM 67.77 70.51 39.92

STN+Basic CNN+BiLSTM 67.41 73.42 39.84
STN+ResNet+BiLSTM 66.81 71.16 41.17

TABLE III: Comparison of word accuracy metric among some of the state-of-
the-art methods and our approaches

V. ANALYSIS

In this section, we have tried to analyse and understand
the models better based on the results obtained from the
four models. This section includes comparison and analysis
of the training parameters against epochs, some interesting
and unique observations about the STN network and finally a
comparison of word length versus accuracy.

A. Training Curves

1) Loss Comparison: All the models were trained for
6 epochs. The average training loss and the corresponding
average validation loss found after all the epochs has been
plotted on FIG. 9. From these loss plots, it is clear that there is
a substantially good decrease in the loss between the first and
second epochs for all the models. Out of these four models,
STN+ResNet+BiLSTM model turned out to be the best model
with lowest training and validation loss.
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Model Synth90k IIIT5k SVTP ICDAR13 ICDAR15 Born-Digital
Images CUTE80

Basic CNN+BiLSTM CA 91.86 81.44 47.13 85.05 60.45 85.29 45.28
WA 78.74 65.55 26.51 73.24 36.18 72.1 39.37

ResNet+BiLSTM CA 91.74 84.29 52.31 84 64.81 86.7 46.73
WA 77.11 67.77 30.69 70.51 39.92 72.14 40.28

STN+Basic CNN+BiLSTM CA 91.79 83.78 52.59 85.13 66.49 86.38 63.32
WA 78.41 67.41 32.4 73.42 39.84 71.26 38.19

STN+ResNet+BiLSTM CA 92.45 83.48 52.59 83.59 65.91 85.9 65.57
WA 79.92 66.81 34.73 71.16 41.17 71.39 40.28

TABLE IV: Comparison of relevant metrics on various datasets among our models. Note that CA is Character Accuracy and WA is Word Accuracy

FIG. 9: Training and Validation Loss Plot for various models

We can also observe a sharp decrease in the validation loss
between the fifth and sixth epoch, which we suspect is due to
insufficient number of epochs for that model. The high initial
loss of the STN+Basic CNN+BiLSTM model maybe the due
to the initial weights taken randomly for the model. Also,
based on the observation from the FIG. 9 plot, we are sure
that the model hasn’t reached over-fitting yet, since both the
losses are still decreasing.

2) Character Accuracy Comparison: An opposite trend is
also followed by the Character Accuracy plot. A high learning
rate for characters at the initial epochs is shown by all the mod-
els. The STN+ResNet+BiLSTM model is also the best model
from this trend as expected. Also, we see a similar increase in
Character Accuracy towards the fifth and sixth epoch like the
Loss trend. Apart from the STN+ResNet+BiLSTM model,
other models show almost constant Character Accuracy after
the second epoch.

3) Word Accuracy Comparison: The Word Accuracy
trend(See FIG. 10) is similar to the Character Accuracy trend.
Here, we can observe a high increase in Word Accuracy

shown by all the models between the first and the second
epoch but, the word accuracy value is still average. The
STN+ResNet+BiLSTM model is again the best model from
this trend as expected. But, we can see an significant increase
in both the Training Word Accuracy and the Validation Word
Accuracy during the last epochs for all the models, which
suggests that the models are first trying to “learn” character
recognition and then trying to “learn” character sequencing,
which is also an interesting finding.

FIG. 10: Training and Validation Word Accuracy Plot for various models

B. Output Characteristics of STN

This subsection captures some of the unique and interesting
features of the STN Transformation. Since the STN network
is End2End trainable, we don’t have any control on what
transformation it tries to make for a better learning. In FIG. 11,
we can see that the STN tries to transform all the images
so that there is a specific orientation for the text parts. We
suspect that the reason for such a transformation is the mean
orientation of the text inside the training images used.
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FIG. 11: Change of orientation by STN

In FIG. 12, we can see how the STN tries to distort the
irrelevant texts inside an image and focus on only the relevant
part. This helps the upcoming neural network blocks to predict
text in a better way by ignoring the background clutters. The
reason for this distortion is the TPS-transformation used inside
the STN network which distorts the surrounding keeping only
the relevant information in focus.

FIG. 12: Distortion of irrelevant information by STN

C. Accuracy against Word Length

Based on the word accuracy versus length comparison for
models on “IIIT5K” dataset without STN(See FIG. 13) and
for models with STN (See FIG. 14), there is high accuracy
for an average word length for almost all the model. The
Basic CNN+BiLSTM model has shown good performance
over wider range and the reason could be the varying length
of the images. Also, the square size pre-processing image in
ResNet+BiLSTM model could be a reason for poor perfor-
mance over wider range.

Addition of STN has led to increase in the word accu-
racy beyond 70% for some of the word lengths as seen in
FIG. 14. Also, from our observation in we see that STN+Basic
CNN+BiLSTM model is length selective, giving very good
results for some lengths and very poor for some other lengths.
For the STN+ResNet+BiLSTM model, again square process-
ing of images could be the reason for restriction in accuracy
performance over wider word length ranges.

FIG. 13: Word Accuracy versus Length for non-STN Models

FIG. 14: Word Accuracy versus Length for models with STN block

VI. CONCLUSION AND FUTURE WORK

In this report, we have presented four End2End models
which can be broadly be classified into CNN+RNN with
or without STN. Out of the four models discussed, the
STN+ResNet+BiLSTM model turned out to be the best. The
peculiar characteristics of our models makes it more interest-
ing and opens an area for future work. The immediate future
works can be training model with larger data set containing
lots of variety and orientation of images since our model was
trained on ∼7% images of the total Synth90K data. Exploring
the use of Bidirectional transformer architectures in Semantic
Recognition Stage along with STN can be another direction
for future work (Also suggested by [22]). Addition of a small-
sized lexicon to this model just to give a bias about some day-
to-day English words may make the model very powerful as
speculated by the authors.
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FIG. 1: Character Confusion Matrix for 36 classes (Lowercase English Alphabets and Arabic Numerals)

APPENDIX A
CHARACTER CONFUSION ANALYSIS

In this section, we have tried to analyse and understand how
our models predicts image containing only single character. As
we have trained our model for detecting sequential text, the
receptive fields used in the CNN is causing overlapping of the
sequences and prediction error and making it to predict more
than one character for some of the cases.

For this analysis we tested the STN+ResNet+BiLSTM
model on English character Dataset and generated a confusion
matrix for one character predictions.

As mentioned earlier the model predicts more than one
character sometimes and the highest length of predicted word
for one character set turns out to be 5. And ‘M’ is the most
wrongly predicted character in terms of extra word length.

For single character prediction, with almost comparable
accuracy with other datasets the diagonal of the matrix is
almost perfectly aligned1. As expected the model is also
prone to committing human errors frequently like predicting
‘0(zero)’ as ‘O’ or predicting ‘I’ as ‘l’ or predicting ‘1’ as ‘I’.
The model also seems to be getting “confused” between some
lowercase and uppercase letters like (‘z’,‘Z’) or (‘y’,‘Y’) or
(‘x’,‘X’) or (‘w’,‘W’) or (‘v’,‘V’) etc.

1with higher values on the diagonal

The two most predicted characters are ‘T’ and ‘I’ respec-
tively. Probably because the model gives a high priority to
the upper horizontal bar for predicting ‘T’. So, most of the
characters having only one horizontal bar at top (like ‘I’,‘J’,‘7’
not ‘E’,‘F’) are predicted as ‘T’. It also predicts ‘I’ for most
of the cases where there is a presence of vertical bar (like ‘1’,
‘l’, ‘H’, ‘N’ etc).

There are some cases where the model predicts a class more
than or almost equal to what it predicts for it’s own true class
(Ignoring cases). Some examples are tabulated below:

True class Predicted class

Greater than true class

l I
z, 7, l T (t)

0(Zero) o
7 z

Comparable to true class

R (r) p
m n
q 9
z 7

TABLE I: Predictions for some selected class
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