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Human Speech Analysis

Where is he/she from? What language was spoken? What was spoken?
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Accent Recognition Language Recognition . Speech Recognition
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{ Emotion Recognition Gender Recognition Speaker Recognition
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Happy ? Sad ? Male or Female? Who is speaking?




Speaker Recognition

e Process of automatically recognizing who is speaking on the
basis of individual information included in speech waves
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Why Speaker Recognition?
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Types of Speaker Recognition

(a) Speaker ldentification /
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(b) Speaker Verification
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Phases of ASR System

e Training/Enrolment Phase:

Samples of speech from

Speaker 1 M‘th
registered speakers to build N ;
’ " s oo ] i e |

specific reference models
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Speaker 10 =4 7 Trained
Classifier

e Testing Phase: ‘

Unknown samples of speech
matched with the bank of speaker
reference models

Speaker X




Speech Feature Extraction

e First stage in both Enrolment and Testing phases. /

Speech signalis
"Quasi-stationary” 4

Can be characterised by

Short-Time Spectral Analysis




Mel Frequency Cepstrum Coefficients

"Perceptually-Relevant Time-Frequency Representation’

e (Can be used for characterization of speech (frame).

e MFCC's can be calculated as follows :

continuous Frame frame Windowing - FFT
speech g Blocking

Cepstrum Mel-frequency
e




Cepstrum Coefficients




Mel Frequency Scale

e From Psychoacoustic experiments, scientists concluded that
human beings perceive frequencies logarithmically.




Mel Filter Banks

transform) to Mel-5cale to represent the perceptual differepCe.
(Mel Frequency Wrapping) ’

e A Mel Filter Bank consists of a number Mel bands.

(which is a hyper-parameter that needs to be gptimized)




Mel Filter Banks

Frequency / mel
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Frequency / Hz

Human Voice Frequency : (300 - 70’60) Hz

fo = 12500H z (To avoid

aliasing)




Mel Frequency
Coefficients




Cepstrum

Cepstrum Quefrency Liftering Rhamonic
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Spectrum Frequency Filtering Harmonige

C(z(t)) = F (log(E(z(t))))
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Understanding Human Speech Generation

Speech IS generated E Glottal pulses Vocal tract Speech signal
by Vocal Tract '
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e \ocal Tract can be modelded as
a filter.

Speech = h(t) * g(t)

g(t) ->Glottal Pulses
-> |mpulse Response of Vocal Tract

Glottal Pulses generated by h
Vocal Cords . (©




Understanding Cepstrum
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Understanding Cepstrum

X(f)= H(H).G(f) | y
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Formants carry the identity of sound unique to speaker




Understanding Cepstrum

Log power spectrum

Inverse Cepstrum
Fourier Transform

Choose intermediate set of
coefficients (Ex; 2-20)

quefrency




Implementation Flow

(Feature Extraction) /

Speach Short-Time Convert to
SP Fourier » Power
ignal S
Transform pectrum

¥

Mel-Frequency
~“Wrapping

Take Discrete Applying
Cosine ' Logarithm

Transform

, MFCC




Why DCT ?

Cn = Zi{:l(lOggk)COS[n(k = %)%]/

n=012..K—1

where S’k = Mel power spectrum coefficients

K =26
Real Coefficients

/ Decorrelation of
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ergy in Mel Bands

Basis Functions are cosines

Dimensionality Reduction




Final Remark on MFCC's

e The Frame Size considered is 256 samples (~21 m?/ __
/

e An acoustic vector (MFCC Coefficients) is computed for eac
frame and stored as an acoustic matrix.
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CHARACTERISTIC of the speaker

e The dimensions of the acoustic matri

(#MFCCcoefficientsa #FT&TRGS)




Speech Feature Matching

e Problem at hand is that of "Supervised Pattern Recognition”

Based on the assumption, that acoustig#”
vectors are a unique feature representation of a speaker's ¥0ice.

* |n this project, Vector Quantization (VQ) is considered for
Feature Matching.




Vector Quantization

e Process of mapping vectors from a large vector space
to a finite number of regions in that space.

e Each suchregion is called a "Cluster”.

e Centroid of cluster is called a "Codeword".

e Collection of all codewords is called "Codebook".

. In this project, speaker-specificcodebooks are
considered.




Vector Quantization

Speaker 1 Speaker 2
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Building Speaker-specific Codebooks

Speech (Particular Speaker) /

\4

MFCC Processing

\

Acoustic Vectors

\

Codebook Formation by clustering using




Initialize Cluster Centroids

$

Compute Distances to each Cluster

Y

Find Minimum Distance

Y

Assign Point to Closest Cluster

Last Data Vector?

Yes

Compute New Cluster Centroids

Is Converged ?
No

Exit

e Unsupervised ML Algorithm -
Number of clusters
'// /

To be optimized

"Initialization

Multiple Random Initializations




KMeans Iteration

Total Within Cluster Sum of Squares
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Flow of Various Phases

Enrolment Phase

{ Speech }
Acoustic Vector
(MFCC for each frame)

|

Clustering using
K-Means

i

Speaker-Specific
Codebook Saved

Testing Phase /

2

Acoustic Vector
(MFCC for each frame)

|

{ Total VQ Distortion }

Calculation
for each saved codebook

l

{ Choose codebook ]

with minimum value

l

[Dutput the corresponding ]

speaker




A Note on the Dataset

 The training data consists of 13 audio files (13 different
speakers) of 2 second duration sampled at 12500 Hz.

e All the speakers are asked to say "zero" for the experime

e The test data also contains similar format audio files 13 in
number).

e The test audio files are collected from the Speakers after
some time (typically some days) to simulate any minor
variations in voice.
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Live Demonstration and -~
Summary of Results |




f )




References

https://minhdo.ece.illinois.edu/teaching/speaker_recognitiy//

F
http://www.ifp.illinois.edu/~minhdo/teaching/speaker_recoghiti

on/speaker_recognition.html

http://practicalcryptography.com/miscellaneous/ma
learning/guide-mel-frequency-cepstral-coefficients‘mfccs/

https://www.youtube.com/ pLayList?List=P'I:-
wATfeyAMNqlee7cH3q1bh4QJFAaeNvO0




