
California Institute of Technology

Pasadena, California

ME/CS/EE 133B : Robotics
Fall 2022

Final Project Report
for

RRT Based Motion Planner
for Non-Holonomic Mobile Robots

Submitted by

Team Name : CaRRT Cruisers

Team Members : Sri Aditya Deevi & Jeff Chen

17 March, 2023

I Problem Description

1 Problem Statement
We considering the problem of motion planning for non-holonomic mobile robots (wheeled systems) such as cars using
RRT-based (Rapidly-exploring Random Trees) algorithms. The planner has to be able to efficiently and effectively plan
through a map avoiding obstacles in various situations such as:

• Narrow Parking Garages

• Parallel Parking

• Narrow Streets

2 Problem Formulation
2.1 Wheeled System-1: Car

Figure 1: Schematic of a simple Car

Figure 2: Visual of a simple car with turning front
wheels in a Blank Map

Kinematic Equations:

Consider the following :

∆y
∆x

= tanθ(
∆y
∆t

)
(
∆x
∆t

) = tanθ

ẏB

ẋB
= tanθ

=⇒ ẏB cosθ− ẋB sinθ = 0

To satisfy this constraint we can have (s is the signed speed
of the car):

ẋB = scosθ

ẏB = ssinθ

We can write ρ = L
tan(φ) and noting that dw = ρdθB we get:

1

dθB = tanφ
L

dw

Dividing both sides by dt and using the fact that ẇ = s (signed speed of the car) yields:

θ̇B = s
L

tanφ

So by considering the center of the car to be at the center of the rear axle we have the following kinematic equations
describing the motion of the car*:

ẋB = scosθ (1)

ẏB = ssinθ (2)

θ̇B = s
L

tanφ (3)

Now we can also consider the center of the car to be at the center of the front axle, we get the following modified
constraint:

−ẋF sinθ+ ẏF cosθ−Lθ̇F = 0

The modified set of kinematic equations describing the motion of the car are:

ẋF = scos
(
θF +φ

)
ẏF = ssin

(
θF +φ

)
θ̇F = s

L
tan

(
θ+φ

)
Both of these are equivalent representations of the wheeled system. In this work we will be primarily considering the

center of the car to be at the center of the rear axle.

We should note that (φ ∈ [−π,π]):

• If s > 0 : FORWARD

• If s < 0 : REVERSE

• If φ> 0 : LEFT

• If φ< 0 : RIGHT

Additional Considerations:

Each state of a car has three variable (x, y,θ), describing the position of the rear axle. For an input (s,φ), the next state
of the car is:

xnext = x+ ẋ∆t (4)

ynext = y+ ẏ∆t (5)

θnext = θ+ θ̇∆t (6)

where ẋ, ẏ, θ̇ can be obtained from equations (1), (2) and (3) respectively.

Also, the range of φ is limited to [−φmax,φmax] and also s ∈ {−1,1}.

Maps:

We have considered several maps for different tasks we want the car to accomplish. Note that the car shown in cyan
color denotes the START position and the purple colored car denotes the GOAL position.

*Note that, here θ = θF = θB

2

• Blank Map†
• Garage

• Parallel Parking
• Narrow Passage

• Narrow Garage

• Dual Parallel Parking

Note that, we also considered some other maps for Move Over and U-turn too but we are including the most
interesting (and difficult!) ones in the report.

†There’s no obstacles in the map, and the start and goal nodes are randomly generated.

3

2.2 Wheeled System-2: Car+Trailer

Figure 3: Schematic of a Car with a Trailer

Figure 4: Visual of Car+Trailer with turning front
wheels in a Blank Map

Kinematic Equations:

We can write the following:

yT = y−d sinθ1

xT = x−d cosθ1

Then:

ẏT = ẏ−d cosθ1θ̇1 (7)

ẋT = ẋ+d sinθ1θ̇1 (8)

Consider the following :

∆yT

∆xT
= tanθ1(

∆yT
∆t

)
(
∆xT
∆t

) = tanθ1

ẏT

ẋT
= tanθ1

Then substituting (7) and (8):

ẏ−d cosθ1θ̇1

ẋ+d sinθ1θ̇1
= tanθ1

As we know from the previous section that ẏ= ssinθ and ẋ = scosθ (where s is the signed speed of the car) :

ẏ−d cosθ1θ̇1

ẋ+d sinθ1θ̇1
= tanθ1

=⇒ ssinθ0 −d cosθ1θ̇1

scosθ0 +d sinθ1θ̇1
= sinθ1

cosθ1

4

scosθ0 sinθ1 +d sin2θ1θ̇1 = ssinθ0 cosθ1 −d cos2θ1θ̇1

dθ̇1 = ssin(θ0 −θ1)

=⇒ θ̇1 = s
d

sin(θ0 −θ1)

The final set of kinematic equations for car with a trailer system is :

ẋ = scosθ0 (9)

ẏ= ssinθ0 (10)

θ̇0 = s
L

tanφ (11)

θ̇1 = s
d

sin(θ0 −θ1) (12)

Again we should note that :

• If s > 0 : FORWARD

• If s < 0 : REVERSE

• If φ> 0 : LEFT

• If φ< 0 : RIGHT

Additional Considerations:

Each state of the wheeled system has four variable (x, y,θ0,θ1), describing the position of the rear axle.

For an input (s,φ), the next state of the car is:

xnext = x+ ẋ∆t (13)

ynext = y+ ẏ∆t (14)

θnext
0 = θ0 + θ̇0∆t (15)

θnext
1 = θ1 + θ̇1∆t (16)

where ẋ, ẏ, θ̇, θ̇1 can be obtained from equations (9), (10), (11) and (12) respectively. The range of φ is limited to
[−φmax,φmax] and also s ∈ {−1,1}.

Maps:

We have considered several maps for different tasks we want the wheeled system to accomplish, similar to the car case.
Note that the car-trailer shown in cyan color denotes the START position and the purple colored car-trailer denotes the
GOAL position.

5

• Blank Map‡
• Getting into Garage

• Parallel Parking
• Narrow Passage

• Narrow Garage

• Dual Parallel Parking

3 Applications
We developed and implemented the RRT algorithm for both car and car with trailer scenarios and tested them on different
maps. Our results show that the algorithm can efficiently generate optimal paths while avoiding obstacles, making it a

‡There’s no obstacles in the map, and the start and goal nodes are randomly generated.

6

suitable solution for various applications.

3.1 Automotive Vehicles

With the increasing demand for autonomous cars, the RRT algorithm can be integrated into autonomous vehicles to
enhance their navigation capabilities, allowing them to plan efficient and safe routes in real-time while avoiding obstacles.
The RRT algorithm can take into account the vehicle’s kinematic constraints, such as the turning radius and maximum
steering angle, and optimize the trajectory accordingly. Furthermore, the algorithm can be used to plan maneuvers such as
parking and reversing, making it useful for different driving scenarios.

3.2 Mars Rover

Mars Rover is a robotic vehicle used for exploration on the surface of Mars. The RRT algorithm can be utilized to generate
optimal paths for the Mars Rover while avoiding obstacles on the Martian surface. With the help of RRT, the Mars Rover
can efficiently navigate through complex terrain, providing more information and data to researchers.

II Methodology

1 High Level Block Diagram
The following block diagram§ illustrates the different phases of a typical experiment:

Now we will focus and zoom into different aspects of the methodology.

2 Notion of Distance
We define two kinds of distance for different purpose :

2.1 Euclidean Distance

The Euclidean distance is a measure used to determine the proximity of two nodes. When the Euclidean distance between
two nodes is smaller than a predefined tolerance value, usually set to 1, we consider them to be identical. To Account for
the 360◦ wrapping we use cos(θ) and sin(θ) for calculating Euclidean Distance.

In the case of a car without trailer, the Euclidean Distance is

d(qa, qb)=
√

(xa − xb)2 + (ya − yb)2 +L2(sin(θa)− sin(θb))2 +L2(cos(θa)− cos(θb))2

§Note that this block diagram mainly focuses on single tree RRT algorithm, we will discuss about the modified algorithm with two trees in the
subsequent sections

7

In the case of a car with trailer, the Euclidean Distance is

d
(
qa, qb

)
=

√√√√√(
xa − xb

)2 + (
ya − yb

)2 +L2
(
sin

(
θa

0
)−sin

(
θb

0
))2 +L2

(
cos

(
θb

0
)−cos

(
θa

0
))2

+d2
(
sin

(
θa

1
)−sin

(
θb

1
))2 +d2

(
cos

(
θb

1
)−cos

(
θa

1
))2

2.2 CSC Distance

The CSC distance is a measure used to determine the path length between two nodes. In the RRT algorithm, the near_node
is the node that having smallest CSC distance towards the target_node.

For calculating this distance, we consider the fact that we move from one state to another using a path that consists of
a Curve+Straight Line+Curve as shown in the figure below. For any two configurations of the car, we have to consider the
counter-clockwise/clockwise turning circle (based on sign of φ) for both configurations. Let the center of the circle be P+/−,
we will discuss the distance of straight line and curves separately.

• Straight line distance –

For P1,± to P2,±, the distance is same as the distance between two center of circles.

S = P1,±P2,±

For P1,± to P2,±, the centers of two circles and the tangent point form a right triangle. We can calculate the distance
by Pythagorean theorem.

S =
√

P1,±P2,±
2 − (2Rmin)2

• Curves –

The arc length of the curve determined by the angle difference between the car and the tangent line.

For P1,pm to P2,pm, the tangent line is parallel to P1P2. Thus the tangent line is

τ= atan2(y2 − y1, x2 − x1)

For P1,± to P2,±, the tangent line is tilted from P1P2 based on the angle of the right triangle. Thus the tangent line is

τ= atan2(y2 − y1, x2 − x1)±asin(
2Rmin

P1P2
)

After knowing the angle of the tangent line, we can calculate the arc length

For P1,pm,

C1 = Rmin ∗wrap360(±(τ−θ1))

For P2,pm,

C2 = Rmin ∗wrap360(±(θ2 −τ))

The total distance of the CSC curve would be:

CSC = C1 +S+C2

8

The above discussion only applies to the forward case. For the backwards case, simply switch the source and goal node
and then apply the calculation again.

3 Sampling Strategy
Uniformly random sampling of nodes will cause the tree to explore the area having no directionality towards goal whereas
greedy sampling with goal node to be the target node always can cause the tree to get stuck leading to no exploration. So,
we considered two different sampling strategies in this work, to address this issue.

3.1 Almost Random Sampling

We sample the target 95% pure random and 5% as the goal. This way the tree can explore the world very fast while having
a tendency to approach the goal. We used this strategy in the modified CaRRT algorithm with two trees as mentioned in
Section 6.

3.2 Goal Biased Random Sampling

We sample the target with 5% chance as the goal and 50% as a random node. The remaining 45% of the time we sample
randomly somewhere near the goal (normally distributed with mean as goal node). Our intuition is that this can help the
planner to plan faster to the goal node. We used this strategy in the CaRRT algorithm with single tree as mentioned in
Section 4.

9

4 CaRRT Algorithm (Single Tree)
A high level RRT algorithm for one tree is presented as follows:

Algorithm 1: CaRRT Algorithm for one tree (High Level)
Data: START, GOAL, MAP
Result: PATH
Define Parameters r, p, TOL;
TREE = [START] ;
while TRUE do

qt = Get_Target(GOAL, r) ; // Goal Biased Random Sampling
qnt = NearestNode_TREE(qt,TREE) ; // Uses CSC Distance
qnext = NextNode_Integrate(qnt,qt) ; // Uses CSC Distance and avoids collisions
add2tree(qnext) ;
d = Euclid_Distance(GOAL, qnext) ;
r = p×d;
if d <TOL then

break
end

end
PATH = Get_Path(qnext, TREE) ;
Return PATH

Figure 5: A Still of the tree growing.

Attempt for Optimization of φ

In this section, we want to describe our attempt to determine the optimal φ for going from the nearest node in the tree to
target. We considered Euclidean distance (for simplicity) as the distance function and let the car’s center be at the center of
the front axle. The problem was to determine the optimal φ (steer angle) that would minimize the distance between the
next node and the target node. In this optimization problem, we did not consider constraints (for simplicity).

Consider:

d (qn, qt)2 =
(
xnt + scos

(
θnt +φ

)
∆t− xt

)2 + (
ynt + ssin

(
θnt +φ

)
∆t− yt

)2+

L2
(
sin

(
θnt + s

sinφ
L

∆t
)
−sinθt

)2
+L2

(
cos

(
θnt + s

sinφ
L

∆t
)
−cosθt

)2

10

where

qt =
 xt

yt
θt

 7→Target Node

qnt =
 xn

yn
θn

 7→Nearest Node to qt in the tree.

qn =
 xn

yn
θn

 7→Potential Next Node to qnt [Using (3), (4), (5)]

Then we considered d
dφ

(
d (qn, qt)2

)= 0 and simplified but we finally got a non-linear (not very well behaved) equation
at the end (Even after considering many simplifying assumptions). We tried to use a optimizer to get the roots of the
equation but it sometimes led to extremely high values. We should note that even if we manage to succeed to get the
optimal φ it may not be considered because it may be out of allowable range or there may be obstacles in the map.

Therefore, we finally decided to search for values of φ in the range [−φmax,φmax] instead that minimized the distance
and were without collision.

5 Smoothing Function
Postprocessing is commonly used in RRT based algorithms to smoothen the path as RRT incorporates randomness in its
methodology. But simple postprocessing is not feasible when we are dealing with non-holonomic motion planning problems.
So we have considered a smoothing algorithm that respects the kinematic constraints of the wheeled system. The following
is the high level pseudo code of the algorithm :

Algorithm 2: Smoothing Function for Non-Holonomic Mobile Robots

Function PostProcess_smooth(PATH):
if len(PATH) <= 2 then

Return PATH
end
NEW_PATH = [PATH[0]] ;
while len(NEW_PATH) < len(PATH) do

qnext = NextNode_Integrate(NEW_PATH[-1], PATH[-1]) ; // Uses CSC Distance and avoids
collisions

NEW_PATH.append(qnext);
if Euclid_Distance(PATH[-1], qnext) < TOL then

Return NEW_PATH
end

end
PATH1, PATH2 = SPLIT(PATH);
PATH1 = PostProcess_smooth(PATH1);
PATH2 = PostProcess_smooth(PATH2);
NEW_PATH = MERGE(PATH1,PATH2);
Return NEW_PATH

end

In this algorithm, we basically reuse the NextNode_Integrate(.) function to find if there is a shorter (in terms of
number of nodes) feasible path to the end of the path. If for the raw path, there is no such post processed path, we
recursively split the raw path and repeat the smoothing algorithm for each of the sub paths. Eventually, we will get a path
that is atleast as smooth as the raw path. But in practice, we find that this algorithm always returns a smoother path than
the raw one.

11

6 Modified CaRRT Algorithm with Two Trees
We grow two trees T1 and T2 from start node and goal node. In each iteration, we randomly pick a target node and find the
nearest node from T1, called qnear, then we find the next node qnext,1 from near node that has the smallest CSC distance
and append it to T1. Then let qnext,1 be the target for T2, find the nearest node qnear and the corresponding next node
qnext,2.

Figure 6: A Still of the Two Trees (one from START and other from GOAL) growing.

Algorithm 3: Modified CaRRT Algorithm with Two Trees (High Level)
Data: START, GOAL, MAP
Result: PATH
Define Parameters TOL;
TREE1 = [START] ;
TREE2 = [GOAL] ;
while TRUE do

qt = Get_Target() ; // Totally Random Sampling
qnt = NearestNode_TREE(qt,TREE1) ; // Uses CSC Distance
qnext,1 = NextNode_Integrate(qnt,qt) ; // Uses CSC Distance and avoids collisions
add2tree(qnext,1, TREE1) ;
qt = qnext,1 ; // set next node as the target for another tree
qnt = NearestNode_TREE(qt,TREE2) ; // Uses CSC Distance
qnext,2 = NextNode_Integrate(qnt,qt) ; // Uses CSC Distance and avoids collisions
add2tree(qnext,2, TREE2) ;
d = Euclid_Distance(qnext,1, qnext,2) ;
if d <TOL then

break
end
SWAP(TREE1, TREE2);

end
PATH1 = Get_Path(qnext,1, TREE1) ;
PATH2 = Get_Path(qnext,2, TREE2) ;
PATH = MERGE(PATH1, PATH2) ;
Return PATH

12

If qnext,1 and qnext,2 are close enough, we assume two tree connect so we break the while loop, otherwise we switch T1
and T2 and continue the loop. Note that we switch T1 and T2 in every iteration so both tree will try to grow towards the
random space.

7 CaRRT* Algorithm
We introduced a notion of optimality into the CARRT algorithm for single tree as a experiment¶. We considered only the
Wheeled system-1: Car, in this case. The high level pseudo code of the algorithm is as follows:

Algorithm 4: CaRRT* Algorithm for one tree (High Level)
Data: START, GOAL, MAP
Result: PATH
Define Parameters r,rnear, p, TOL;
TREE = [START] ;
while TRUE do

qt = Get_Target(GOAL, r) ; // Goal Biased Random Sampling
qnt = NearestNode_TREE(qt,TREE) ; // Uses CSC Distance
qnext = NextNode_Integrate(qnt,qt) ; // Uses CSC Distance and avoids collisions
qnear_all = Get_Near_Nodes(qnext,rnear); // Gets Nodes in the Neighbourhood of qnext
qmin = qnt;
cmin = cost(qnt) + CSC_Distance(qnext,qnt);
for qnear ∈ qnear_all do ; // Connecting along a minimum-cost path

if cost(qnear) + CSC_Distance(qnext,qnear) < cmin then
qmin = qnear;
cmin = cost(qnear) + CSC_Distance(qnext,qnear);

end
end
qnt = qmin ;
for qnear ∈ qnear_all do ; // Rewiring the Tree

if cost(qnext) + CSC_Distance(qnear,qnext) < cost(qnear) then
Parent(qnear) = qnext;
cost(qnear = cost(qnext) + CSC_Distance(qnear,qnext);

end
end
add2tree(qnext) ; // Parent is qnt
d = Euclid_Distance(GOAL, qnext) ;
r = p×d;
if d <TOL then

break
end

end
PATH = Get_Path(qnext, TREE) ;
Return PATH

Here, we store compute, store and update, when necessary, a cost (For example, path length) associated with each
node. CaRRT* is basically a modified version of CaRRT algorithm, where we also consider rewiring the tree for optimality
considerations. We will mention some results and inferences in subsequent sections.

¶This is not a main part of our project because we could not conduct extensive experiments as in the other algorithms. But some experiments and
results are attached at the end.

13

Figure 7: A Still of the tree growing. As we will give our inferences later, we observed that the tree grows slower, but
branches less and the overall “behvaiour" of the growth seems to different qualitatively.

Note on Parallelization : Implementation Detail
We realized that as the number of nodes in the tree increases, computing the CSC distance sequentially (Ex: using for
loops) can be highly time consuming and can slow down the algorithm. So in order to cut down the time in this stage, we
parallelized the computation and used cupy, which utilizes the GPU (CUDA cores), instead of numpy.

III Results, Analysis and Inferences

1 Description of Quantitative Metrics
We realized that we need to also consider proper quantitative metrics to understand and analyze the performance of
various aspects of the problem. So we define the following quantitative metrics as follows:

1. # Nodes Sampled : We record the number of nodes sampled as a part of the algorithm.

2. Tree Size : We record the number of nodes that are added to the tree, which is the size of the tree.

3. # Nodes in Path : We determine number of nodes that are a part of the path found (Raw or Smooth).

4. Path Length: We determine distance travelled by the mobile robot while traversing from the START to GOAL. This
includes the both the curved segments and the straight line segments. For straight line segments the length of the
segment is the 2D Euclidean distance between the (x, y) coordinates of the end nodes of the segment. For curved
segments, the length of the segment is:

Lcurve =
∣∣∣∣ L
tanφ

(
θA

0 −θB
0

)∣∣∣∣
where θA

0 and θB
0 correspond to the orientations of end nodes of the segment.

5. Path Smoothness : The overall smoothness of the path. A score close to zero indicate smoother paths. We consider
that straight line paths have a score of zero (φ= 0 and R = L

tanφ →∞) and paths with larger radius of curvature

(R = L
tanφ) to have lower score. Therefore, the final metric can be calculated as follows:

Path Smoothness= ∑
segments

(
L

Rsegment

)2
= ∑

segments
tan2 (

φsegment
)

14

6. Planning Time (in s) : We record
the time taken to find a path frmo
START to GOAL.

6. Smoothing Time (in s) : We
record the time taken to find
postprocess the raw path to
get the smooth path using the
smoothing function.

6. Outcome : If the planner cannot
find a path, the outcome is FAIL-
URE, otherwise it is SUCCESS.

Figure 8: Defining a Typical Path. Here, AB & DE are some straight line segments
and SA, BC & CD are some curved segments of the path.

2 Experimental Configuration
We perform experiments differing in the following factors:

(i) Wheeled System Types. Car, Car+Trailer

(ii) Algorithm. Single Tree, Two Tree

(iii) Scenarios/Maps. Garage, Narrow Garage, Blank Map, Parallel Parking, Narrow Passage, Dual Parallel Parking

For each experimental configuration, we conducted 5 experiments and recorded mean and standard deviation of the
quantitative metrics mentioned in the previous section and some interesting stills of the path. The stills of the path
included the traced raw and smooth paths.

3 Results of Notable Experiments
In this section, we will first present notable quantitative and qualitative results obtained from the experiments we
conducted according to the experimental configuration mentioned in the previous section and then we try to make
interesting inferences from the results after analysis.

3.1 Quantitative Results

Note

In all the tables shown in this subsection, for each experimental configuraion

• 1st sub-row corresponds to the raw path (Before Smoothing) metrics.

• 2nd sub-row corresponds to the smooth path (After Smoothing) metrics.

Also, whenever a metric is represented as a±b, a corresponds to the mean value of the metric and b corresponds to the
standard deviation of the metric.

15

Expt. Config
Metrics

Planning Time (in s) Smoothing Time (in s) # Nodes Sampled # Nodes in Path Tree Size Path Length Path Smoothness Success Rate (in %)

Car - Single Tree
436.09±235.8782 - 40821.4±13501.51 82.8±11.2321 3324.4±1087.787 81.8±11.2321 14.7666±1.888363 100

436.09 ± 235.6237875 1.636±0.240216569 40821.4±13501.50788 69±9.859006035 3324.4±1087.787222 70.802±8.406245892 10.9418±1.864881272 100

Car - Two Trees
276.136±46.7977 - 29314.6±10313.91 69.2±2.227106 2546±895.7384 68.0608±2.648857 12.1518±1.180364 100

276.136±146.7977422 1.232±0.2352360517 29314.6±10313.90565 60±4.604345773 2546±895.7383547 68.8978±19.8127333 10.1698±2.30889111 100

Car+Trailer - Single Tree
1228.786±2440.1042 - 78331.8±18078.82 92.4±3.006659 6105.8±1368.479 75.4±34.26135 15.8798±0.880078 100

1228.786±440.1041783 2.176±0.5993529845 78331.8±18078.82265 72.8±2.638181192 6105.8±1368.47863 74.4332±3.942138019 10.8124±0.4809667764 100

Car+Trailer - Two Trees
4860.748±2409.682 - 155997±40644.35 114.2±15.72768 13002.4±3626.077 152.768±20.24997 19.3496±2.852108 100

4860.748±2409.682336 3.648±0.883864243 155997±40644.34587 85.2±15.86694678 9904.5296±5929.298131 81.8884±41.23193535 12.5066±1.842791752 100

Table 1: Quantitative Results for Scenario/Map : Garage

Expt. Config
Metric

Planning Time (in s) Smoothing Time (in s) # Nodes Sampled # Nodes in Path Tree Size Path Length Path Smoothness Success Rate

Car - Single Tree
436.09±235.8782 - 40821.4±13501.51 82.8±11.2321 3324.4±1087.787 81.8±11.2321 14.7666±1.888363 100

436.09±235.6237875 1.636±0.240216569 40821.4±13501.50788 69±9.859006035 3324.4±1087.787222 70.802±8.406245892 10.9418±1.864881272 100

Car - Two Trees
276.136±146.7977 - 29314.6±10313.91 69.2±2.227106 2546±895.7384 68.0608±2.648857 12.1518±1.180364 100

276.136±146.7977422 1.232±0.2352360517 29314.6±10313.90565 60±4.604345773 2546±895.7383547 68.8978±19.8127333 10.1698±2.30889111 100

Car+Trailer - Single Tree
1228.786±440.1042 - 78331.8±18078.82 92.4±3.006659 6105.8±1368.479 75.4±34.26135 15.8798±0.880078 100

1228.786±440.1041783 2.176±0.5993529845 78331.8±18078.82265 72.8±2.638181192 6105.8±1368.47863 74.4332±3.942138019 10.8124±0.4809667764 100

Car+Trailer - Two Trees
4860.748±2409.682 - 155997±40644.35 114.2±15.72768 13002.4±3626.077 152.768±20.24997 19.3496±2.852108 100

4860.748±2409.682336 3.648±0.883864243 155997±40644.34587 85.2±15.86694678 9904.5296±5929.298131 81.8884±41.23193535 12.5066±1.842791752 100

Table 2: Quantitative Results for Scenario/Map : Narrow Garage

16

Expt. Config
Metric

Planning Time (in s) Smoothing Time (in s) # Nodes Sampled # Nodes in Path Tree Size Path Length Path Smoothness Success Rate

Car - Single Tree
43.142±47.1955 - 8306.4±8257.103 24±7.694154 696.2±691.2457 23±7.694154 4.1188±1.199961 100

43.142±47.1955008 0.044±0.02727636339 8306.4±8257.102993 21.2±6.177378085 696.2±691.2456582 20.0218±6.047834402 3.0012±0.5990871055 100

Car - Two Trees
1.984±0.926188 - 678±316.9031 21.6±3.611094 60.4±27.52163 36.7868±24.52982 4.8122±1.127642 100

1.984±0.9261878859 0.07±0.03577708764 678±316.9031398 19.2±3.18747549 60.4±27.52162786 34.4524±22.88387108 4.167±1.290455888 100

Car+Trailer - Single Tree
12.78±14.44246 - 3477.4±3175.954 29.2±6.305553 291±264.5653 28.2±6.305553 6.058±0.535468 100

12.78±14.44246378 0.086±0.07310266753 3477.4±3175.954068 25.2±5.491812087 291±264.5653038 24.6372±6.284400955 3.8182±1.056201761 100

Car+Trailer - Two Trees
11.986±4.775494 - 3368.6±1243.502 39.2±10.62826 294.8±108.3225 79.2192±38.89215 8.363±2.658769 100

11.986±4.775494111 0.21±0.08414273587 2685.104±1816.853829 32.8±9.6 294.8±108.3224815 47.801±24.35116221 6.1628±1.882673886 100

Table 3: Quantitative Results for Scenario/Map : Blank Map

Expt. Config
Metric

Planning Time (in s)
Smoothing Time (in s) # Nodes Sampled # Nodes in Path Tree Size Path Length Path Smoothness Success Rate

Car - Single Tree
355.382±205.9814 - 37559±17510.23 54.4±5.817216 3084.4±1441.605 53.4±5.817216 9.7334±1.240262 100

355.382±205.9814099 0.502±0.114437756 37559±17510.22987 43.4±5.238320341 3084.4±1441.605161 45.7706±7.799649392 6.6416±1.998647202 100

Car - Two Trees
56.964±25.21891 - 7020.4±2170.244 57.8±7.082372 606.2±181.6154 106.9978±39.07029 10.2496±1.287854 100

56.964±25.21891163 1.11±0.6649812027 7020.4±2170.243544 45.6±3.261901286 606.2±181.6154178 96.373±4.545409597 7.5536±0.876439068 100

Car+Trailer - Single Tree
4489.717±3139.704 - 165590.7±72540.47 81±2.160247 13543.67±5911.529 80±2.160247 11.61533±0.645674 60

4489.716667±3139.704145 1.556666667±0.106249183 165590.6667±72540.46937 50.66666667±1.699673171 13543.66667±5911.52853 48.89866667±2.06129835 6.980666667±0.9715174843 60

Car+Trailer - Two Trees
278.9929±94.51824 - 19900±7320.629 69.85714±5.054802 1682.286±637.7159 133.3483±30.92307 12.48871±1.554309 100

278.9928571±94.51824355 5.272857143±1.795221548 19900±7320.628935 61.57142857±6.779320296 1682.285714±637.7159498 113.603±23.92894812 9.335571429±1.735187998 100

Table 4: Quantitative Results for Scenario/Map : Parallel Parking

17

Expt. Config
Metric

Planning Time (in s) Smoothing Time (in s) # Nodes Sampled # Nodes in Path Tree Size Path Length Path Smoothness Success Rate

Car - Single Tree
38.242±33.7216 - 8869.6±4718.3 69.2±2.856571 620.2±372.8299 68.2±2.856571 11.3322±1.526625 100

38.242±33.7216 0.454±0.2662780502 8869.6±4718.3 60.2±1.6 620.2±372.8299 60.0316±1.09416 7.1116±0.600939 100

Car - Two Trees
41.54±11.40847 - 8367.143±1811.35 77.28571±9.705879 643.4286±111.4628 153.0609±31.43939 13.23757±2.212673 100

41.54±11.40847 0.5685714286±0.3132515453 8367.143±1811.35 68±7.855844 643.4286±111.4628 136.603±36.74084 9.1±1.839312 100

Car+Trailer - Single Tree
276.53±181.6557 - 47242.6±16338.34 82.6±4.673329 2755.8±1255.01 81.6±4.673329 14.6358±1.263574 100

276.53±181.6557 0.446±0.04841487375 47242.6±16338.34 69.2±5.268776 2755.8±1255.01 66.3802±5.087768 9.6008±1.151339 100

Car+Trailer - Two Trees
696.99±77.79975 - 77632.33±18895.27 82.66667±3.299832 4774.333±1035.98 132.791±40.57216 12.42233±0.491789 60

696.99±77.79975 0.5533333333±0.03091206165 77632.33±18895.27 66±8.041559 4774.333±1035.98 80.73±27.1415 8.421±1.696607 60

Table 5: Quantitative Results for Scenario/Map :Narrow Passage

Expt. Config
Metric

Planning Time (in s) Smoothing Time (in s) # Nodes Sampled # Nodes in Path Tree Size Path Length Path Smoothness Success Rate

Car - Single Tree
95.534±74.85489 - 15305.4±9385.231 41.6±7.605261 1252±759.1147 36.6±9.308061 7.8642±1.170802 100

95.494±74.88808 0.272±0.05706137047 15305.4±9385.231 32.4±5.678028 1252±759.1147 33.4792±7.287483 5.5618±1.10188 100

Car - Two Trees
13.088±3.099577 - 3693.6±844.6399 44.6±6.343501 279.6±57.45468 44.2666±6.327144 8.1596±1.612154 100

13.088±3.099576745 0.284±0.02653299832 3693.6±844.639947 36.2±4.166533331 279.6±57.45467779 36.56±7.453337829 5.8074±1.432936928 100

Car+Trailer - Single Tree
284.7775±240.1502 - 37434.25±31469.53 54.75±21.33512 2638±1917.038 53.75±21.33512 9.42375±3.079055 80

284.7775±240.1502 0.53±0.341101158 37434.25±31469.53 39.25±13.49768 2638±1917.038 37.818±12.55129 7.00575±1.604448 80

Car+Trailer - Two Trees
43.95±10.13641 - 9386.4±1963.358 54.4±15.05457 742.4±132.0342 53.0082±14.11212 10.718±3.410023 100

43.95±10.13641 0.784±0.3903639328 9386.4±1963.358 45.2±15.71496 742.4±132.0342 45.7014±15.44001 7.8064±3.621778 100

Table 6: Quantitative Results for Scenario/Map : Dual Parallel Parking

18

3.2 Interesting Inferences and Graphical Results

Figure 9: Graphical Representation of Quantitative Metrics across various different experiment dimensions. The orange
bars indicate metrics Before Smoothing whereas the the blue bars indicate metrics After Smoothing.

■ Effect of Smoothing Function :

Looking at both the bars in each plot of Figure. 9, we can clearly see that for all the metrics such as Path Length, Path
Smoothness‖ and # Nodes in Path, the after smoothing values are almost always less (and in most cases very less) across
various scenarios. This shows the efficacy of the developed smoothing function. Note that, this post-processing is handled
by respected the kinematic non-holonomic constraints of the wheeled system. This makes the final path better and feasible
for the system to accomplish.

■ Comparison of Different Algorithms across Scenarios :

In this part, we analyse the effectiveness of Single Tree CaRRT and Two tree CaRRT algorithms in different maps for
both wheeled systems.

Figure 10: Comparison of # Nodes sampled across Scenarios

Figure 11: Comparison of Planning Time (in s) across Scenarios

‖Here, we should note that a lower value of smoothness indicates a smoother path

20

Figure 12: Comparison of Smoothing Time (in s) across Scenarios

Figure 13: Comparison of Success Rate across Scenarios

1. Narrow Garage & Narrow Passage–

Mainly looking at Figures 10, 11, 12, 13 (and the quantitative results from the previous section) we can see that
(especially for the Car+Trailer case), the Single Tree CaRRT algorithm performs much better than the two tree
version.

21

Figure 14: START Tree reaches the GOAL almost
without merging (Two Tree CaRRT - Narrow Garage)

Figure 15: GOAL Tree reaches the START almost
without merging (Two Tree CaRRT - Narrow Garage)

From the above figures, we can see that the two trees don’t help much in this case, as for Car+Trailer it is very hard
both the trees to configuration such that the two trees can merge.

2. Blank Map–

The Blank Map has no obstacles so it takes very less effort for all the algorithms to find a collision free path as
expected.

3. Parallel Parking and Dual Parallel Parking–

We observed the the Two Tree CaRRT is significantly helpful for improving the parallel parking performance, by
observing Figures 10, 11, 12, 13 (and the quantitative results from the previous section). This is because it takes a
lot of search for a single tree to find the perfect path for the system to follow in order to park. This is observed in both
Parallel Parking and Dual Parallel Parking maps.

4. Smoothing Time (in s)–

Considering Figure 12, we can see that the Smoothing Times of Car+Trailer system is higher than the Smoothing
Times for Car system. This is expected because the Car+Trailer is more constrained comparatively and post-
processing by considering all the constraints can be time-consuming. But all the Smoothing Times are very small in
comparison to the Planning Times.

5. Car+Trailer System –

As there are additional kinematic and collision based constraints on the Car+Trailer system, we can observe in
all scenarios,except the ones involving Parallel Parking with Two Tree CaRRT algorithm, the metric values are
much higher as compared to just the Car. In the parallel parking maps, the Two Tree CaRRT regardless of higher
constraints seems to perform very effectively and efficiently.

22

■ Some Stills and Path Uniqueness Analysis :

Figure 16: Some Stills of the Blank Map. Both Raw Path (shown in red) and Smooth Path (shown in blue) are displayed.

Figure 17: Some Stills of the Narrow Garage Map. Both Raw Path (shown in red) and Smooth Path (shown in blue) are
displayed.

Figure 18: Some Stills of the Dual Parallel Parking Map. Both Raw Path (shown in red) and Smooth Path (shown in blue)
are displayed.

Consider the following inferences :

• Some of the stills of the paths found in the Blank Map** as shown in Figure 16.

• Now let us consider the Narrow Garage Map. Here we observed all experiments and we found two “classes" of paths
depending upon the orientation of the wheeled system, when it passes through the narrow passage in the map. They
are Forward in Passage and Reverse in Passage. Some of the stills are shown in Figure 17.

• Now let us consider the Dual Parallel Parking Map. Here we observed all experiments and we found four “classes"
of paths depending upon the movement of the system in the path. They are 90 degrees (the system’s orientation
changes by 90◦ in the path), One Reverse, Smooth Entry, Two Reverses. Some of the stills are shown in Figure 19.

Some Results and Inferences for CaRRT* Algorithm
As we mentioned in Section 7, we experimented briefly by introducing a notion of optimality into our Single Tree CaRRT
algorithm for Car by considering:

• Storing Costs (like Path Length) in each node.

• Using Rewiring of Tree to find locally optimal paths.

**Note that here even the START and GOAL positions are randomized

24

We found in this case, based on our experiments on Blank Map and Move Over†† that the algorithm typically runs
much slower than the normal CaRRT algorithm but it generally finds path of lower path lengths. Also we noticed that, the
growth behaviour of the tree is different and it has less branches, closely spaced nodes and “straighter" paths. Some of the
results we obtained are as follows:

S.No.
Metric Experiment #1 Experiment #2 Experiment #3 Experiment #4 Experiment #5

Planning Time (in s)
134.55 134.55 - - 125.08 125.08 340.08 340.08 - -

Smoothing Time (in s) - 0.29 - - - 0.18 - 0.25 - -

Nodes Sampled 31560 31560 103000 103000 29932 29932 31793 31793 107000 107000

Nodes in Path 44 31 - - 30 21 40 27 - -

Tree Size 2436 2436 - - 2354 2354 2573 2573 - -

Path Length 14.421 13.178 - - 17.369 17.055 16.308 17.737 - -

Path Smoothness 10.855 7.124 - - 5.649 3.654 8.749 5.219 - -

Success Rate Success Success Failure Failure Success Success Success Success Failure Failure

Table 7: Single CaRRT Algorithm for Car in Scenario: Move Over. Values in red correspond to before smoothing whereas
values in blue correspond to after smoothing.

S.No.
Metric Experiment #1 Experiment #2 Experiment #3 Experiment #4 Experiment #5

Planning Time (in s)
8.55 8.55 152.49 152.49 - - - - 307.27 307.27

Smoothing Time (in s) - 0.08 - 0.56 - - - - - 0.52

Nodes Sampled 5376 5376 32856 32856 125000 125000 104000 104000 45906 45902

Nodes in Path 15 13 106 58 - - - - 86 44

Tree Size 450 450 2751 2751 - - - - 3842 3842

Path Length 4.68 4.506 17.374 16.674 - - - - 21.809 21.746

Path Smoothness 1.853 1.588 31.184 16.389 - - - - 23.513 10.316

Success Rate Success Success Success Success Failure Failure Failure Success Success

Table 8: Single CaRRT Algorithm for Car in Scenario: Blank Map

Figure 19: Some Stills of Paths found by CaRRT* Algorithm. Both Raw Path (shown in red) and Smooth Path (shown in
blue) are displayed. Values in red correspond to before smoothing whereas values in blue correspond to after smoothing.

††The same map as the one given in the Homework Set

25

IV Conclusion
We successfully built RRT based motion planners for non-holonomic mobile robots for two wheeled systems : Car and
Car+Trailer that can plan a effective path efficiently in challenging maps. These algorithms are initially given a map
along with START and GOAL. They use the kinematic model of the wheeled system, an obstacle collision checker and
CSC (Curve-Straight-Curve) notion of distance under the hood. We considered variants of this CaRRT algorithm such as
Single Tree, Two Tree and an RRT* version. The output of these algorithms is a raw path. A postprocessing function that
respects the non-holonomic kinematic constraints of the wheeled system is used to produce smooth, collision-free path. We
also recorded multiple quantitative metrics to analyze their performances of both the raw and smooth paths. We analyzed
the collected metrics across various experiments.

We presented the inferences from analyses, along with stills and interesting graphical results. We found that the
CaRRT algorithm with a single tree and goal biased random sampling performs the best in maps like narrow passage and
narrow garage. Also CaRRT algorithm with two trees and almost random sampling performs the best in maps involving
parallel parking.Finally, the smoothing algorithm almost always finds a better collision-free path given the raw one.

One avenue of future research is further investigate and the make the CaRRT* algorithm more efficient and incorporate
other kind of costs in it, so that we can find smooth, effective and optimal (atleast locally) paths.

Autonomous systems like smart cars and planetary rovers need to be able to make decisions quickly and accurately to
avoid obstacles and reach their intended destinations. One of the challenges faced by autonomous systems is navigating
through complex terrain. This can include navigating through crowded urban environments with pedestrians and other
vehicles, or exploring rocky and uneven planetary surfaces. In these situations, it is important for the autonomous system
to generate smooth paths that minimize sudden changes in direction or speed, as these can lead to instability or collisions.
By using the developed algorithms, autonomous systems can navigate through complex terrain more efficiently and safely.

We would like to acknowledge Professor Günter Niemeyer for the advice on the project topic and his support in general.

The code repository for our project can be found at:

https://github.com/Claude0311/final133b

The drive link for the accompanying final video is as follows:

https://drive.google.com/file/d/1USkcb3FE1OYir1-HiPoQMdeCHV_cHZ2c/view?usp=share_link

26

https://github.com/Claude0311/final133b
https://drive.google.com/file/d/1USkcb3FE1OYir1-HiPoQMdeCHV_cHZ2c/view?usp=share_link

	Problem Description
	Problem Statement
	Problem Formulation
	Wheeled System-1: Car
	Wheeled System-2: Car+Trailer

	Applications
	Automotive Vehicles
	Mars Rover

	Methodology
	High Level Block Diagram
	Notion of Distance
	Euclidean Distance
	CSC Distance

	Sampling Strategy
	Almost Random Sampling
	Goal Biased Random Sampling

	CaRRT Algorithm (Single Tree)
	Smoothing Function
	Modified CaRRT Algorithm with Two Trees
	CaRRT* Algorithm

	Results, Analysis and Inferences
	Description of Quantitative Metrics
	Experimental Configuration
	Results of Notable Experiments
	Quantitative Results
	Interesting Inferences and Graphical Results

	Conclusion

