
California Institute of Technology

Pasadena, California

ME/CS/EE 133A : Robotics
Fall 2022

Final Project Report
for

Self Untangling Robotic Snake Arm
with Dynamic Obstacle Avoidance

Submitted by

Team Name : Rattlestar

Team Members : Sri Aditya Deevi & Jeff Chen

9 December, 2022

I Problem Description

1 Problem Statement
For this problem, we are considering a simulated environment where there are obstacles (e.g. rocks) falling vertically. The
robot being used is a redundant snake arm. The robotic snake arm has to perform the following tasks :

• Avoid the obstacles hitting its body.

• Touch a random target (e.g. a colored cube) in the workspace, with the correct gripper orientation.

• If initially entangled in a loop, it has to untangle itself and then repeat, the above mentioned tasks.

2 System Description
2.1 Robot Types

For this project, RVIZ is being utilized. We built and used the following types of snake robots for analyzing and comparing
the performance (see Section IV).

XY pattern snake:

We refer to a snake robot URDF with 7 DOFs from the GitHub and extend it to 41 DOFs using a URDF generating
package *.

Figure 1: XY pattern 9 DoFs Figure 2: XY pattern 41 DoFs

YZ pattern snake:

For this, we consider the snakebot URDF provided by the professor. Here we have revolute joints with z and y as axes
of rotation.

Figure 3: YZ pattern 9 DoFs Figure 4: YZ pattern 41 DoFs

Also, note that a gripper with a cube is attached to the tip of the robot to illustrate that the tip orientation is matching
the target’s orientation.

3D Meshes

We use the following 3D meshes of a rock and a rubik’s cube (target) to make the scene more vivid and realistic.

*https://github.com/hauptmech/odio_urdf

1

https://github.com/guzhaoyuan/snake_robot/blob/master/snake_description/urdf/sevenJoints.urdf
https://github.com/hauptmech/odio_urdf

Figure 5: Mesh of Rock Obstacle Figure 6: Mesh of Target Cube

3 Applications
A snake robot is useful for exploring some dangerous environments. For example, in a Mars exploration mission, a snake
robot can easily pass through a narrow cave or a thin trench and use its gripper to collect samples. Or in a rescue mission
after the earthquake, the snake robot can sneak into a collapsed building while avoiding falling rocks using the algorithm
implemented in this project.

II Methodology

High Level Block Diagram
The following block diagram illustrates the different phases of a typical experiment:

Now we will focus and zoom into different aspects of the methodology.

2

1 Dynamic Obstacle Avoidance
1.1 Formulation

We assume that we know the position of the falling obstacles*. Here, we consider that at a given point of time, there are M
rocks or obstacles and use the following strategy:

(i) Find the joint that is closest to an obstacle in the snake’s body and call it a “tip". Define multiple tips (# Tips =#
Obstacles = M) in the snake’s body, where each tip corresponds to an obstacle :

tipdof, j = argmin
i

∥∥0 | p⃗obs, j − 0 | p⃗i
∥∥ (1)

(ii) Compute all the M corresponding tip Jacobians Jv,tip, j
† (ith column is computed here):

(Jv,tip, j)i =
[0 | e⃗ i ×

(0 ∣∣ p⃗tipdof, j − 0∣∣ p⃗i
)]

(2)

(iii) Concatenate all the primary task quantities as follows:

Jv,avoid, eff =


Jv,tip,1
Jv,tip,2

...
Jv,tip,M

 ; 0 | p⃗obs, eff =


0 | p⃗obs,1
0 | p⃗obs,2

...
0 | p⃗obs,M

 ; 0 | p⃗tipdof, eff =


0 | p⃗tipdof,1
0 | p⃗tipdof,2

...
0 | p⃗tipdof,M


It should be mentioned that we are only considering the XY movements (repulsions) when we do this because the

obstacles are falling in the Z-direction. This means that all positions in this equation are of the form p⃗r =
[

xr
yr

]
∈R2.

Also, extracting first two rows, Jv,tip, j is a (2×# DoFs) matrix.

(iv) Use the following equation to the effective joint velocities:

q̇avoid =λJ+
v,avoid, eff

(0 | ptipdof, eff − 0 | pobs, eff
)∥∥0 | ptipdof, eff − 0 | pobs, eff

∥∥2 (3)

where J+
v,avoid, eff is the weighted pseudo inverse. Intuition is that the robot’s movement (repulsion) should be away

from the obstacle and its magnitude should be inversely proportional to the obstacle’s distance from its body (in the
XY plane).

1.2 Calculation of Jacobian

Equation (2) describes the calculation of ith column of the tip jacobian. We have explored two different formulations as
described:

Robotic Jacobian –

(Jv,tip, j)i =
[0 | e⃗ i ×

(0 ∣∣p⃗tipdof, j − 0∣∣ p⃗i
)]

; i ≤ tipdof, j

(Jv,tip, j)i =
 0

0
0

 ; i > tipdof, j (4)

*In real life, this can be hopefully estimated using object pose estimation AI algorithms
†Some details about Jacobian calculation are described later

3

Biological Jacobian –

(Jv,tip, j)i =
[0 | e⃗ i ×

(0 ∣∣p⃗tipdof, j − 0∣∣ p⃗i
)]

; ∀i = 1,2, . . . ,#DoFs (5)

We analyze how the snake’s movement is affected by using these two different formulations in Section IV. But for
the majority of the experiments we utilize the robotic jacobian as it provides more “freedom" to the snake (to dodge obstacles).

2 Touching Target
In this section, we discuss schemes we used for the target touching. The objective in this task is that the gripper cube
should match that of the target cube‡. Let the position and orientation of the target be pgoal and Rgoal, and the position and
orientation of the end tip (at an instant) be p0 and R0. We determine the movement to approach the goal in the following
two steps:

2.1 Finding Axis and Angle of Rotation

We want to find a single rotation (axis e⃗ and angle θgoal) that takes from the current end tip pose to the goal pose. In
other words, we can find a rotation matrix Rot(⃗e,θgoal) such that Rgoal = Rot(⃗e,θgoal) ·R0. Note that e⃗ is the eigenvector for
Rot(⃗e,θgoal)= Rgoal ·RT

0 , so we derive e⃗ and θgoal through the following calculation:

(i) For the general case, we know that:

Rot(⃗e,θgoal)=
 exex (1− cθ)+ cθ exe y (1− cθ)− ezsθ exez (1− cθ)+ e ysθ

e yex (1− cθ)+ ezsθ e ye y (1− cθ)+ cθ e yez (1− cθ)− exsθ
ez ex (1− cθ)− e ysθ ez e y (1− cθ)+ exsθ ez ez (1− cθ)+ cθ



where sθ = sin
(
θgoal

)
, cθ = cos

(
θgoal

)
, and e⃗ =

 ex
e y
ez

.

So, since we know Rot(⃗e,θgoal), say :

Rot(⃗e,θgoal)=
a b c

d e f
g h i


Then, when |sin(θgoal)| >> 0, we can easily get e⃗ and θgoal using the following relations:

e⃗ =
h− f

c− g
d−b

 ; ||⃗e|| = 2sin(θgoal)

(ii) When sin(θgoal)≈ 0 we can to obtain three eigenvectors and eigenvalues for Rot(⃗e,θgoal) {say using numpy.eig}:

v⃗ = [⃗v1, v⃗2, v⃗3]

λ= [1, eiθgoal , e−iθgoal]

e⃗ would be v⃗1, which has a corresponding eigenvalue of 1, and using the remaining eigenvalues e±iθgoal we can obtain
θgoal.

‡Both of them are colored for visual ease

4

2.2 Calculating Trajectories

Given Rot(⃗e,θgoal), we then explore three different trajectory generation and execution schemes and define q̇touch in three
ways:

(i) spline Scheme –

First, we can define a cubic spline for x and R :

x(t), ẋ(t)= spline(x0, xgoal,6sec)

R(t)= Rot(⃗e,θ) ·R0, θ(t), θ̇(t)= spline(0,θgoal,6sec)

Then q̇touch would be:

q̇touch = J+
touch

[
x+λveP (x, x(q))

êθ̇+λweR(R,R(q))

]
(6)

where ê is the unit eigenvector derived in the previous section and Jtouch =
[

Jv
Jw

]
.

(ii) attract Scheme –

Here we make the tip approach the goal directly without using velocities derived from splines :

q̇touch = J+
touch

[
λveP (xgoal, x(q))
λweR(Rgoal,R(q))

]
(7)

where Jtouch =
[

Jv
Jw

]
.

(iii) spline+attract Scheme –

We first make the tip to approach the goal by spline movement, after the spline is complete, if the tip hasn’t reached
the goal (because touching targets is not always the primary task), then we use attraction movement to approach the
goal.

q̇touch =



J+
touch

[
x+λveP (x, x(q))

êθ+λweR(R,R(q))

]
, t ≤ 6 sec

J+
touch

[
λveP (xgoal, x(q))
λweR(Rgoal,R(q))

]
, 6< t ≤ 8 sec

(8)

where ê is the unit eigenvector derived in the previous section and Jtouch =
[

Jv
Jw

]
.

Checkbox for target
We also created a checkbox GUI (based on a Boolean Publisher) to determine whether the snake should approach the
target (while also avoiding rocks) or just avoid the obstacles. This just changes the priorities of the snake in a certain way
and can help us focus on the performance of obstacle avoidance.

5

3 Self Knots in the Snake
3.1 Starting in a Tangled Pose

Since we are studying techniques to untangle a snake robot
when it is stuck in a knot, the first step we took was to formal-
ize the notion of a knot and initialize the robot in a knotted
state. For this purpose, we are considering the trefoil knot,
which is the simplest non-trivial knot (as shown in Figure. 7).

Figure 7: Illustration of a Trefoil Knot

This knot can be represented by the following parametric equations, t ∈ [0,2π) :

x = cos t+2cos2t
y= sin t−2sin2t
z =−sin3t

We want the snake’s body§ be in the shape described by this knot. We can see that t = 0 and t = 2π corresponds to
the same point in the 3D space. This would mean that if we consider the entire interval [0,2π), the snake’s tip would be
touching its base, which is not desired. So, we use (2/3) of this interval, i.e. t ∈ [π3 , 5π

3] (See Figure 8).

Figure 8: Partial Trefoil Knot, t ∈ [π3 , 5π
3]

Figure 9: XY snake initialized in a partial trefoil knot

We use the following strategy to initialize the snake in a random trefoil knot (randomization of knots is discussed later)
as shown in Figure 9:

(i) We consider Q equally (and sufficiently) spaced points (in 3D space) from the parametric curve, where each point
maps to a joint in a snake’s body. Note that we only consider a portion of the snake’s body as mentioned earlier.

(ii) These points in 3D form the 0 | pgoal, j for the corresponding snake’s joints.

(iii) The joints corresponding to these points are considered as “tips" and we compute all the tip jacobians Jv,tip, j,
j = 1,2, . . . ,Q, (ith column is computed here):

(Jv,tip, j)i =
[0 | e⃗ i ×

(0 ∣∣p⃗tipdof, j − 0∣∣ p⃗i
)]

(iv) Concatenate all the quantities as follows:

§While implementing we considered only a portion of the robot (leaving the few links) to be part of the knot, because that seemed to form a more
visually pleasing knot!

6

Jv,tip,eff =


Jv,tip,1
Jv,tip,2

...
Jv,tip,Q

 ; 0 | p⃗goal, eff =


0 | p⃗goal,1
0 | p⃗goal,2

...
0 | p⃗goal,Q

 ; 0 | p⃗tipdof, eff =


0 | p⃗tipdof,1
0 | p⃗tipdof,2

...
0 | p⃗tipdof,Q


(v) Then we use the Newton Raphson’s Algorithm iteratively, to get the final joint configuration so that the snake is

placed in a trefoil knot:

q(k)= q(k−1)+ J−1
v,tip,eff(q(k−1))

 0 | p⃗goal, eff︸ ︷︷ ︸
Constant for a knot

−0 | p⃗tipdof, eff


3.2 Untangling : Self-Repulsion Formulation

Now that the snake is initialized in a knot, we formulated a self repulsion mechanism so that the snake untangles itself
from the knot. For this, we use the following strategy:

(i) For all the links in the kinematic chain, we obtain the position vector along the link which can be obtained by walking
up the chain (shown for link i here, i = 1,2, . . . ,#DoFs−1) as follows:

0 | p⃗L, i = 0 | p⃗i+1 − 0 | p⃗i

(ii) Now, for all the links j succeeding this link i (∀ j > i), we check if it is too close to link i (and this is again done for all
links i = 1,2, . . . ,#DoFs−1)):∥∥∥∥∥0 | p⃗L, j −

〈0 | p⃗L, j,0 | p⃗L, i〉∥∥0 | p⃗L, i
∥∥2

∥∥∥∥∥︸ ︷︷ ︸
Perpendicular Distance between Link i and j

< 2.8L l ink and 0 < 〈0 | p⃗L, j,0 | p⃗L, i〉 < ∥∥0 | p⃗L, i
∥∥2

where L l ink is the length of each link in the snake’s body.

(iii) If the condition mentioned in (ii) is satisfied (say for joint z), we set a desired repulsive vector for the link z as follows
(this is done for all links j that satisfy the condition mentioned in (ii)) :

0 | p⃗repel,z =
0 | p⃗L, z −

(
0| p⃗L, i+0| p⃗L, i+1

2

)
∥∥∥∥0 | p⃗L, z − 〈0| p⃗L, z ,0| p⃗L, i〉

∥0| p⃗L, i∥2

∥∥∥∥2

Intuition is that link z, which is too close to link i should move away from the midpoint of link i. We concatenate all
such vectors to form 0 | p⃗repel, eff.

(iv) We also compute the “tip" jacobians for all such links z as follows (rth column is computed here):

(Jv,tip,z)r =
[0 | e⃗r ×

(0 ∣∣ p⃗tipdof, j − 0∣∣ p⃗r
)]

; r > tipdof, i

(Jv,tip,z)r =
 0

0
0

 ; r ≤ tipdof, i

Intuition is that joints 1 to i need not move for the repulsion of link z away from the midpoint of link i. We concatenate
all such jacobians to form Jv,repel, eff.

(v) Use the following equation to the effective joint velocities:

q̇repel =λJ+
v,repel, eff

0 | p⃗repel, eff (9)

where J+
v,repel, eff is the weighted pseudo inverse.

A demonstration of the snake robot coming out of the loop is provided with the corresponding project video.

7

4 Task Specifications
In this section, we talk about how we compute the q̇ values in different phases of the experiments:

4.1 Joint Velocity : Different Tasks

In conclusion to this section, the q̇r and Jacobian Jr for different tasks can be summarized as follows (Note that for
calculating “tip" jacobians we use Robotic Jacobian definition as mentioned in (4)) :

(i) Dynamic Obstacle Avoidance –

This equation can be obtained from (3) :

q̇avoid =λJ+
v,avoid, eff

(0 | ptipdof, eff − 0 | pobs, eff
)∥∥0 | ptipdof, eff − 0 | pobs, eff

∥∥2

(ii) Touching Target –

This equation can be obtained from (6), (7) and (8) depending upon the trajectory execution scheme :

q̇touch = J+
touch A

where

A =



[
x+λveP (x, x(q))

êθ+λweR(R,R(q))

]
∀t, spline Scheme

[
λveP (xgoal, x(q))
λweR(Rgoal,R(q))

]
∀t, attract Scheme

[
x+λveP (x, x(q))

êθ+λweR(R,R(q))

]
t ∈ [0,6];

[
λveP (xgoal, x(q))
λweR(Rgoal,R(q))

]
t ∈ (6,8] spline+attract Scheme

(iii) Self Untangling –

This equation can be obtained from equation (9) :

q̇repel =λJ+
v,repel, eff

0 | p⃗repel, eff (9)

(iv) Maintain Nominal Joint Positions –

This task is added so that the snake robot stays close to a nominal joint configuration (can be the optimal in the real
world). In the case of untangling phase, this term provides the extra directional pull for the snake to come out of the
loop :

q̇nom =λ(qnom − q)

8

4.2 Joint Velocity : Different Phases

For different phases of our typical experiments, there are different priorities for tasks. We describe our formulation in this
section. Note that in this section, the null space for a task is given by the expression Φgen = (I − J+

genJgen), where Jgen is
the Jacobian for the task.

(i) Stuck in a knot (Stays Still) –

q̇ = 0

(ii) Self Untangling + Dynamic Obstacle Avoidance –

Primary Task → Avoid Rocks ; Secondary Task → Untangle ; Tertiary Task → Nominal Joint Position

q̇ = q̇avoid +Φavoid(q̇repel +Φrepel q̇nom)

(iii) Target Touch + Dynamic Obstacle Avoidance –

Primary Task → Avoid Rocks ; Secondary Task → Touch Target ; Tertiary Task → Nominal Joint Position

q̇ = q̇avoid +Φavoid(q̇target +Φtarget q̇nom)

(iv) Pure Dynamic Obstacle Avoidance –

This happens when the target checkbox is unchecked.

Primary Task → Avoid Rocks ; Secondary Task → Nominal Joint Position

q̇ = q̇avoid +Φavoid q̇nom

III Implementation Details

1 Randomization
In this section, we discuss some of the implementation details with the respect to the randomization of obstacles, targets,
and knots so that we can incorporate more diversity and understand if the robot is able to handle any general, random
situation.

1.1 Rock Obstacles

We mainly randomize the (x, y, z) position of where the obstacle starts to fall from. To make sure that the path of some
obstacles definitely intersects with any of the snake robot’s links, we use the following strategy:

x = 0 | x⃗i+1u1 + 0 | x⃗i(1−u1)+ϵ1

y= 0 | y⃗i+1u2 + 0 | y⃗i(1−u2)+ϵ2

z = 4+ϵ3

where ϵ1, ϵ2 ∼N (0,0.2); u1, u2 ∼U (0,1) ; ϵ3 ∼N (0,1). Also 0 | p⃗i+1 =
 0 | x⃗i+1

0 | y⃗i+1
0 | z⃗i+1

 and 0 | p⃗i =
 0 | x⃗i

0 | y⃗i
0 | z⃗i

 are the position

vectors of the ith and (i+1)th joints respectively. Note that i is randomly chosen from the top portion of the snake, leaving
a few joints from the base.

This is essentially an adversarial strategy, where we are targetedly “attacking" the snake and if it proves to dodge
these obstacles effectively, it is highly likely that this method would work well in the real world, where there is no targeted
bombarding of obstacles at the snake robot.

9

1.2 Target Cube

We also randomize the position (xT , yT , zT) and orientation quaternion (qx,T , qy,T , qz,T) of the target cube as follows:

 xT
yT
zT

=
 u1

u2
u3

 ;


qx,T
qy,T
qw,T
qz,T

=


p

1−msin(2πn)p
1−mcos(2πn)p

msin(2πo)p
mcos(2πo)


where m, n, o ∼U (0,1).

1.3 Knots

We also randomize the self knots in which the robot initializes in the beginning of each cycle by randomizing the following
aspects:

• The number of joints that constitute a knot are randomized by randomly choosing a startpoint (or a starting joint).

• We also randomize the relative orientation of the knot:

Krot =Rotx (θ1)Rotz (θ2)K

where K is a 3×Q matrix consisting of Q sampled 3D points from the parametric knot equations; θ1, θ2 ∼U (0,2π).

2 Performance Monitoring Functions
We check how well the robot fulfills the desired task by monitoring the following aspects as follows:

2.1 Obstacle Collision Check

We check whether every joint is far enough from every marker:

No Obstacle Collision≡ { ||0 | p⃗ j − 0 | p⃗m|| > ϵthreshold ∀ joints j and obstacles m}

In case this condition is violated at any point, then we note this as an obstacle collision.

2.2 Self Collision Check

We check whether every joint is far enough from every link as follows:∥∥∥∥∥0 | p⃗L, j −
〈0 | p⃗L, j,0 | p⃗L, i〉∥∥0 | p⃗L, i

∥∥2

∥∥∥∥∥︸ ︷︷ ︸
Perpendicular Distance between Link i and j

> 2.8L l ink or 0 > 〈0 | p⃗L, j,0 | p⃗L, i〉 or 〈0 | p⃗L, j,0 | p⃗L, i〉 > ∥∥0 | p⃗L, i
∥∥2

In case this condition is violated at any point, then we note this as a self collision.

2.3 Touch Target Check

We check whether the position and orientation of the gripper cube are close to the target cube as follows:

Target Touched ≡ {
∥∥0 | p⃗target − 0 | p⃗tip

∥∥< ϵthreshold &
∥∥Rtarget −Rtip

∥∥< ϵthreshold}

Whenever this condition is satisfied, we note it as a target touch.

IV Results, Analysis and Inferences
We have conducted a number of experiments in order to collect observations and analyze the various aspects of the project.

10

1 Experimental Configuration
Here, we talk about the configuration for different types of experiments we conducted:

1.1 Experiment Dimensions

We perform experiments differing in the following factors:

(i) Robot types. XY with 41 DOFs, XY with 9 DOFs, YZ with 41 DOFs, and YZ with 9 DOFs.

(ii) Trajectory Execution Scheme. spline, spline+attract, attract schemes

(iii) # Rocks (Instantaneous). The number of rocks falling on the snake robot at a given instant of time is varied from 0
to 5.

For each experiment, we implement four periods and record data in ROS bag to evaluate the performance. Each period
lasts for 25 seconds with the same tasks order (as mentioned earlier) and time intervals:

(i) Stuck in a knot (Stays Still) for 1 second

(ii) Self Untangling + Dynamic Obstacle Avoidance for 4 seconds

(iii) Target Touch + Dynamic Obstacle Avoidance for 20 seconds. When a target is touched, a new random target would be
generated.

1.2 Types of Graphical Plots

We plot the following data from rqt_plot and MATLAB:

(i) The number of total targets and touched targets (cumulative) to evaluate the success rate.

(ii) The number of robot self-collisions (non-cumulative)

(iii) The number of rocks that collide with the robot (cumulative)

(iv) Joint States

1.3 Quantitative Metric Definitions

We record the following data for further analysis:

(i) The number of total targets and touched targets (cumulative) to evaluate the target touch accuracy.

(ii) The number of rocks that collide with the robot (cumulative) and the total number of rocks falling to evaluate the rock
avoidance accuracy.

(iii) Joint Velocities and Joint Positions.

2 Results of Notable Experiments
In this section, we will first present notable quantitative and qualitative results obtained from the experiments we
conducted according to the experimental configuration mentioned in the previous section and then we try to make
interesting inferences from the results after analysis.

2.1 Quantitative Results

Note

In all the tables shown in this subsection, for each number of rocks (instantaneous):

• 1st sub-row corresponds to the experiments using spline based target trajectory execution.

• 2nd sub-row corresponds to the experiments using spline+attract based target trajectory execution.

• 3rd sub-row corresponds to the experiments using attract based target trajectory execution.

The following table provides the results for XY snake robot with 41 DoFs, with respect to various metrics.

11

Rocks

(Instantaneous)

Metrics
Time

Elapsed

Total

Rocks

Rock

Collisions

Rock Avoidance

Accuracy (in %)

Total

Targets

Touched

Targets

Target Touch

Accuracy (in %)

0 - 16 12 100

0 100 0 0 - 16 12 100

0 - 658 654 100

0 100 14 5 50

1 100 80 0 100 16 12 100

1 98.75 237 233 100

1 99.375 12 2 25

2 100 160 0 100 15 10 90.909

2 98.75 132 127 99.2188

1 99.583 12 1 12.5

3 100 240 0 100 13 6 66.6667

2 99.1667 39 28 80

2 99.375 12 1 12.5

4 100 320 1 99.6875 14 7 70

5 98.4375 28 18 75

3 99.25 12 0 0

5 100 400 2 99.5 14 8 80

8 98 28 19 79.1667

Table 1: Quantitative Results for XY snake with 41 DoFs

The following table provides the results for XY snake robot with 9 DoFs, with respect to various metrics.

Rocks

(Instantaneous)

Metrics
Time

Elapsed

Total

Rocks

Rock

Collisions

Rock Avoidance

Accuracy (in %)

Total

Targets

Touched

Targets

Target Touch

Accuracy (in %)

0 - 16 11 91.667

0 100 0 0 - 16 12 100

0 - 187 180 98.361

1 98.75 14 6 60

1 100 80 2 97.5 16 11 91.667

2 97.5 144 137 97.857

3 98.125 14 7 70

2 100 160 1 99.375 16 9 75

4 97.5 99 93 97.895

4 98.333 12 2 25

3 100 240 6 97.5 14 8 80

6 97.5 71 64 95.522

8 97.5 12 1 12.5

4 100 320 7 97.8125 13 9 100

15 95.3125 41 31 83.7837

7 98.25 14 4 40

5 100 400 12 97 13 4 44.444

13 96.75 39 27 77.1429

Table 2: Quantitative Results for XY snake with 9 DoFs

The following table provides the results for YZ snake robot with 41 DoFs, with respect to various metrics.

12

Rocks

(Instantaneous)

Metrics
Time

Elapsed

Total

Rocks

Rock

Collisions

Rock Avoidance

Accuracy (in %)

Total

Targets

Touched

Targets

Target Touch

Accuracy (in %)

0 - 16 12 100

0 100 0 0 - 16 12 100

0 - 681 677 100

1 98.75 12 2 25

1 100 80 1 98.75 16 12 100

1 98.75 258 254 100

2 98.75 12 1 12.5

2 100 160 4 97.5 15 11 100

5 96.875 98 93 98.9362

3 98.75 12 0 0

3 100 240 2 99.1667 12 4 50

4 98.333 49 42 93.333

7 97.8125 12 0 0

4 100 320 6 98.125 12 4 50

3 99.0625 25 17 80.9524

9 97.75 12 0 0

5 100 400 9 97.75 13 6 66.6667

12 97 25 15 71.4286

Table 3: Quantitative Results for YZ snake with 41 DoFs

The following table provides the results for YZ snake robot with 9 DoFs, with respect to various metrics.

Rocks

(Instantaneous)

Metrics
Time

Elapsed

Total

Rocks

Rock

Collisions

Rock Avoidance

Accuracy (in %)

Total

Targets

Touched

Targets

Target Touch

Accuracy (in %)

0 - 16 12 100

0 100 0 0 - 16 12 100

0 - 652 648 100

0 100 16 9 75

1 100 80 0 100 16 12 100

1 98.75 497 493 100

0 100 15 7 63.6363

2 100 160 3 98.125 16 12 100

2 98.75 349 343 99.4203

4 98.333 14 7 70

3 100 240 5 97.9167 15 11 100

3 98.75 304 300 100

1 99.6875 13 4 44.4444

4 100 320 3 99.0625 15 10 90.909

5 98.4375 156 147 96.7105

6 98.5 12 2 25

5 100 400 5 98.75 16 12 100

6 98.5 254 249 99.60

Table 4: Quantitative Results for YZ snake with 9 DoFs

13

2.2 Interesting Inferences

Comparison based on Trajectory Schemes :

Now, let us compare the three different schemes for trajectory execution : spline, spline+attract and attract.

1. By observing the quantitative results mentioned in the previous section and also the plots below, we can say that
spline+attract scheme works better than the other two, as it almost perfectly trades off between having a good
target touch accuracy also relatively low joint velocities.

Figure 10: For XY robot with 41 DoFs Figure 11: For XY robot with 41 DoFs

2. We see that the attract scheme touches the targets really fast but has high joint velocities, which can see in the
abrupt joint position changes in Figure 12

3. Also, generally speaking, we observed high joint velocities while untying and lower joint velocities for touching the
target, in case of spline trajectory scheme.

14

Figure 12: Comparison of Joint Position plots for different schemes - YZ snake with 9 DoFs

Comparison based on # Rocks (Instantaneous) :
In this regard, we have the following observations/inferences:

1. From Figure 13, we can see that the joint plots become more noisy as the number of rocks falling on the robot at a
given instant increase. Note the high velocity peaks in the plots occur due to the self collisions that happen during
Phase-1 when the robot goes into a knot.

2. From the quantitative results, Figure 10 and Figure 14, we can observe that as the number of rocks falling on the
robot at a given instant increase, the target touch accuracy decreases, which is reasonable as we know that touching
target is modeled as the secondary task.

15

Figure 13: Comparison of Joint (position & velocity) plots for different number of obstacles - YZ Snake with 41 DoFs

3. Also, we can see that in almost all cases the rock avoidance accuracy is extremely high, even as the number of
obstacles increase. So this makes sense because in Phase-3, we modeled obstacle avoidance as the primary task.

16

Figure 14: Comparison of Target Touch Accuracies for robot types - spline Trajectory Scheme

Comparison based on Robot Types :

For making any generic statements about snake robots with which axis pattern (either XY or Y Z) performed better, we
feel that a lot more experiments are necessary (as the sample size is too small to generalize as of now). But qualitatively,
we observed that in the case of Y Z robot there are more self collisions as compared to the XY robot.

Comparison based on Definition of “Tip" Jacobian :

Based on the type of definition of “tip" jacobian (either biological/robotic) jacobian we observe differences in behavior
(and hence the names):

• In the case of biological jacobian definition, we consider the “tip" to affect both sides of its body. This leads to a more
symmetric and biological movement. But it adds an additional constraint to the robot’s movement. We tried using
this definition in our experiments but it gave poor results because of this additional constraint.

• In the case of robotic jacobian definition, we consider the tip to affect the joints below it. This leads to asymmetric and
more sharp robotic movements. But it has more freedom and hence has a better chance to juggle between multiple
tasks more effectively. So, we decided to go with this definition of the jacobian.

A demonstration of this difference in the behaviors is shown in the accompanying project video.

V Conclusion
We successfully built the snake robots and designed their movement to complete multiple tasks simultaneously. The
robot can stay in a knot, untie itself while avoiding falling rocks, and touch targets while avoiding rocks. For each task,
we define trajectory execution schemes in different ways. To avoid obstacles, the robot moves the joint that is closest
to an obstacle away from the obstacle. To touch a target, the robot tip first follows the spline trajectory to approach
the target, and if the robot hasn’t touched the target when the spline is complete, the robot switch to attract move-
ment. To untie itself, we define a self repulsive formulation to make the joints move away from the links if they are too close.

We performed experiments and analyses for different robots and scenarios. We noticed that as the number of obstacles
increases, the rock avoidance accuracy remains extremely high because we set avoiding obstacles to the primary task, and

17

meanwhile the target touch accuracy decreases because we set it to the secondary task. We analyzed the velocity and the
target touch accuracy for three different schemes for trajectory execution and turns out the spline+attract has the best
behavior.

We mentioned at the beginning that we want to apply this robot to ambitious applications like Mars space missions and
rescue missions. Based on the high obstacle avoidance accuracy of the robot, we are confident that the snake robot can
dodge the falling rock in the mission and make great contributions to these applications. Yet, we need to perform more
experiments on the robot to fine-tune the target touch accuracy. One other avenue to explore in the future is to change the
gamma of the weighted inverse Jacobian and the time interval for each task to see if we can improve the robot’s performance.

We would like to acknowledge Professor Günter Niemeyer for the advice on the project topic, the formula of inverse
Jacobian and his support in general. We would also like to thank all TAs that gave us feedback and advice.

The code repository for our project can be found at:

https://github.com/dsriaditya999/robotics_final_v2

The drive link for the accompanying final video is as follows:

https://drive.google.com/file/d/1mdCJE-xgja2CTbyLOZJY8AU8m7SZORJ9/view?usp=share_link

18

https://github.com/dsriaditya999/robotics_final_v2
https://drive.google.com/file/d/1mdCJE-xgja2CTbyLOZJY8AU8m7SZORJ9/view?usp=share_link

	Problem Description
	Problem Statement
	System Description
	Robot Types

	Applications

	Methodology
	Dynamic Obstacle Avoidance
	Formulation
	Calculation of Jacobian

	Touching Target
	Finding Axis and Angle of Rotation
	Calculating Trajectories

	Self Knots in the Snake
	Starting in a Tangled Pose
	Untangling : Self-Repulsion Formulation

	Task Specifications
	Joint Velocity : Different Tasks
	Joint Velocity : Different Phases

	Implementation Details
	Randomization
	Rock Obstacles
	Target Cube
	Knots

	Performance Monitoring Functions
	Obstacle Collision Check
	Self Collision Check
	Touch Target Check

	Results, Analysis and Inferences
	Experimental Configuration
	Experiment Dimensions
	Types of Graphical Plots
	Quantitative Metric Definitions

	Results of Notable Experiments
	Quantitative Results
	Interesting Inferences

	Conclusion

